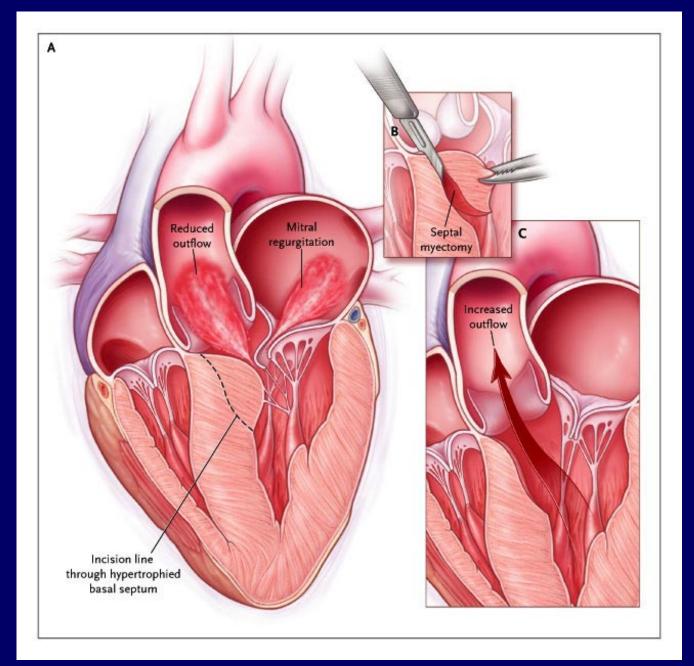
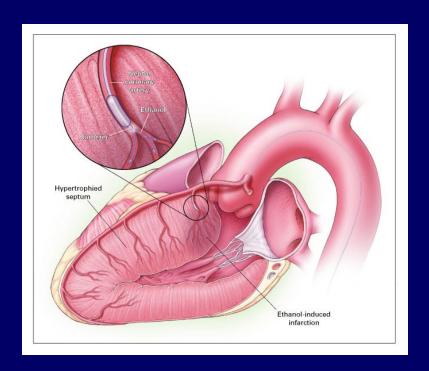
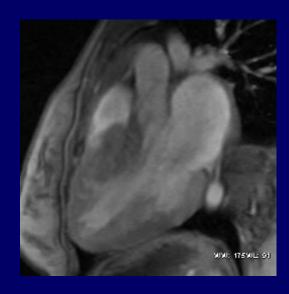
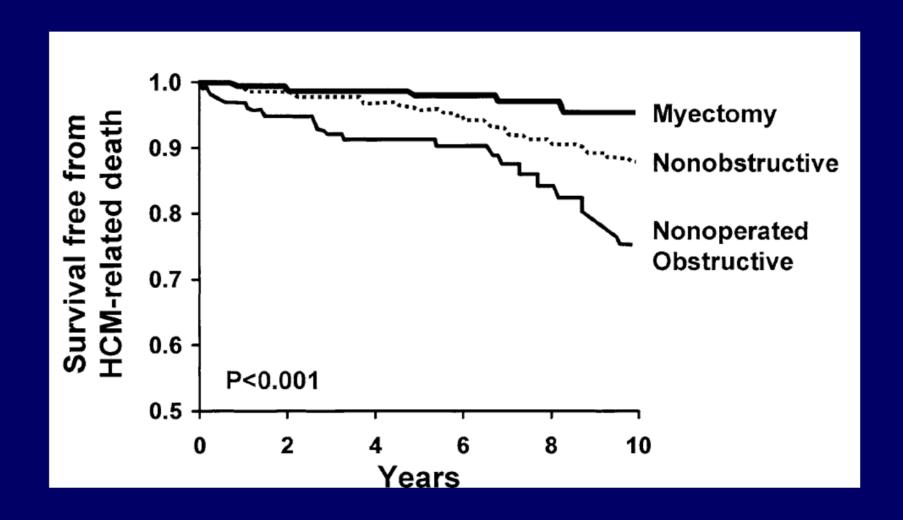

Alcohol Septal Ablation - What is the Current Experience and Indication?

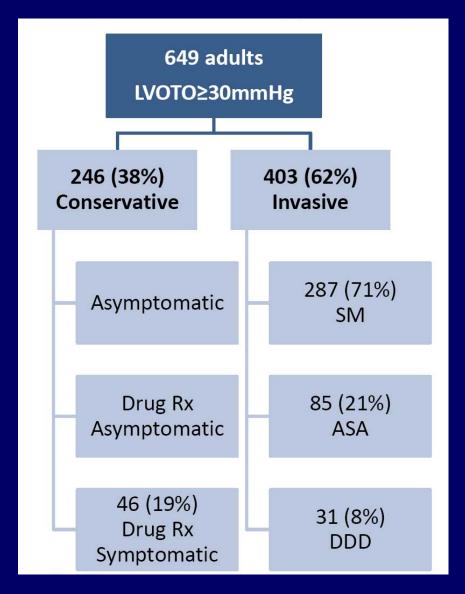

Andre Keren, MD Hadassah University Hospital Jerusalem, Israel

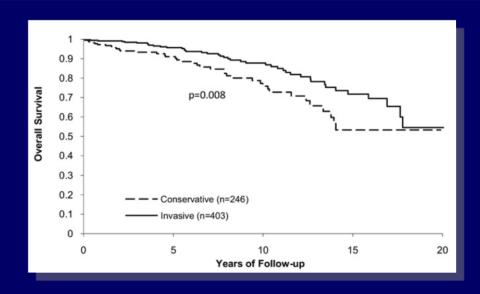
Israel Heart Society Meeting, Jerusalem, 23.4.2013


HOCM (Hypertrophic obstructive CM)

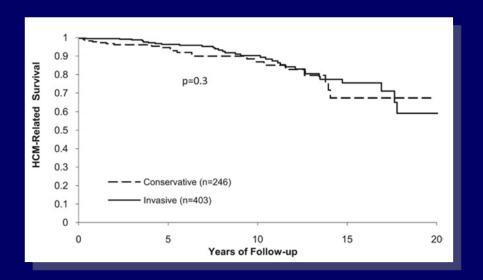





HYPERTROPHIC OBSTRUCTIVE CARDIOMYOPATHY



Long Term Survival in 649 Patients with Resting Obstructive Hypertrophic Cardiomyopathy

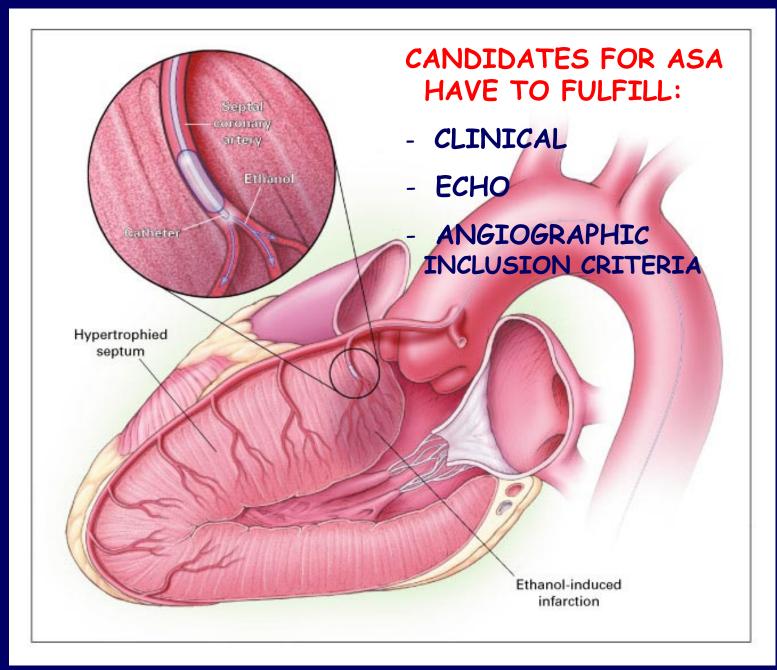


Long Term Survival in 649 Patients with Resting Obstructive Hypertrophic Cardiomyopathy

Overall Survival

No difference in 5 years survival between SM and ASA

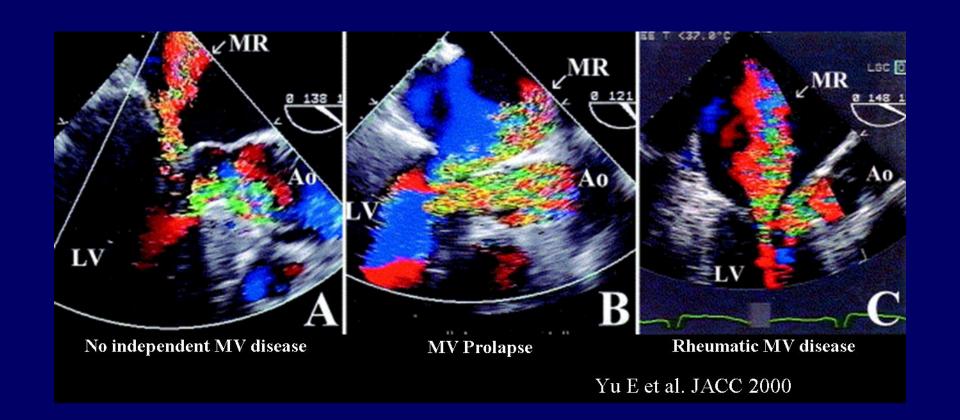
HCM Related Survival


Ball W, J Am Coll Cardiol 2011;58:2313-2321

Major Points to be Discussed

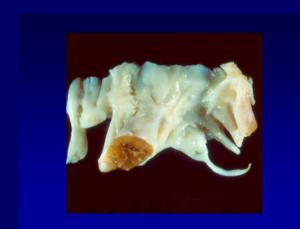
- Indications and Main Results of ASA
- Does ASA induce an Arrythmogenic Scar?
- How do the results of ASA compare with SM?

Indications for Septal Ablation and Myectomy in HOCM


- Severely symptomatic pts unresponsive to medical therapy (class III / IV)
- LVOTO >50 mmHg rest or >100 mmHg provocable
- Class II pts with limitations and/or with syncope related to LVOTO

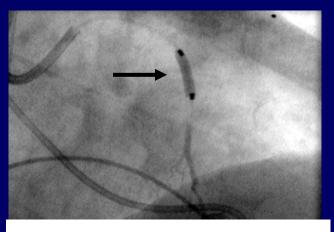
NEJM 347:1307,2002

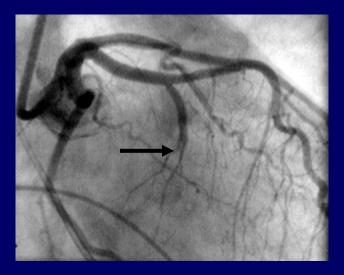
Echocardiographic Inclusion Criteria


- IVS thickness of ≥ 1.7 cm
- SAM & NO ORGANIC MV DISEASE

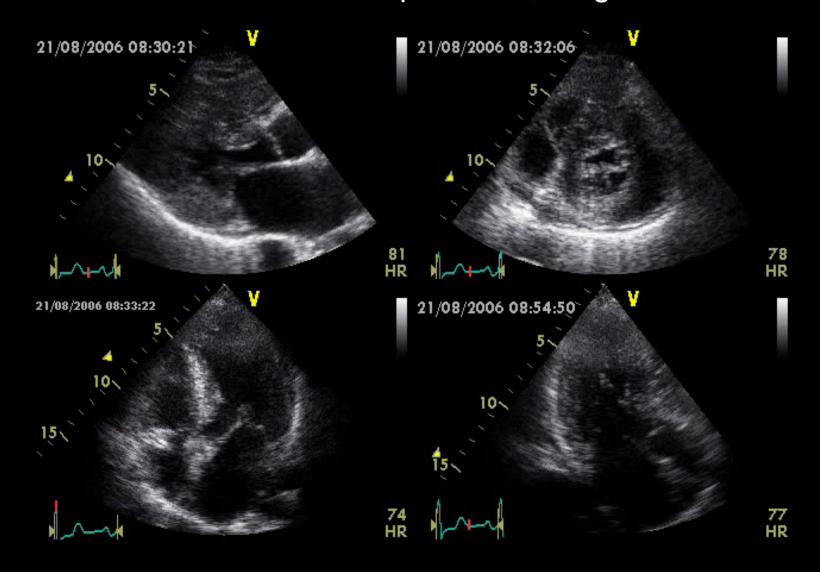


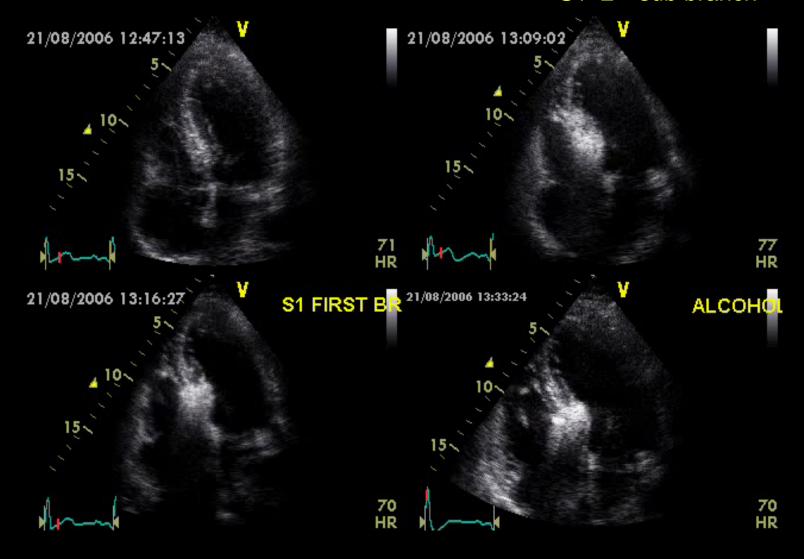
Independent MV Pathology in ~10%


Klues HG, MaronBJ Circulation 1992

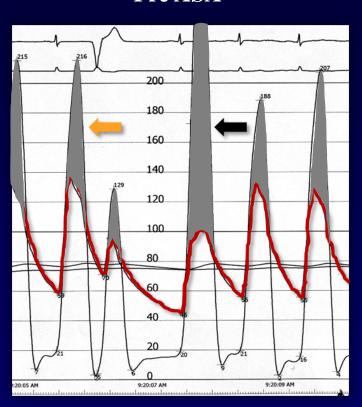


ANGIOGRAFIC INCLUSION CRITERIA

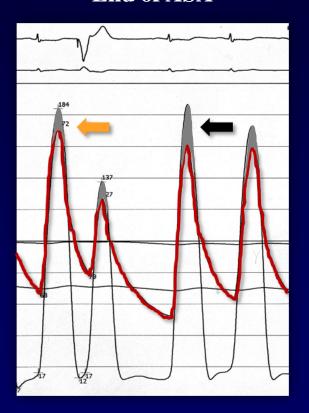


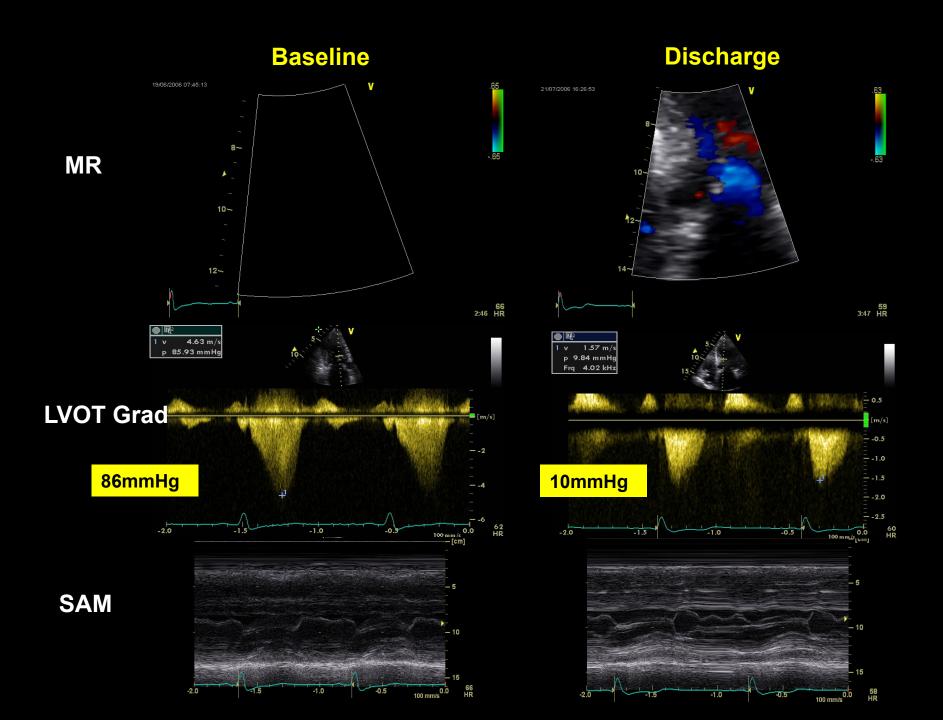

Exclude LAD leakage

Myocardial Echo Contrast (MEC) - for target branch selection In the cath lab: Multiple views, Target area



S1 2nd sub branch




LVOT Gradient

Pre ASA

End of ASA

Biphasic Behavior of the LVOT Gradient Post ASA

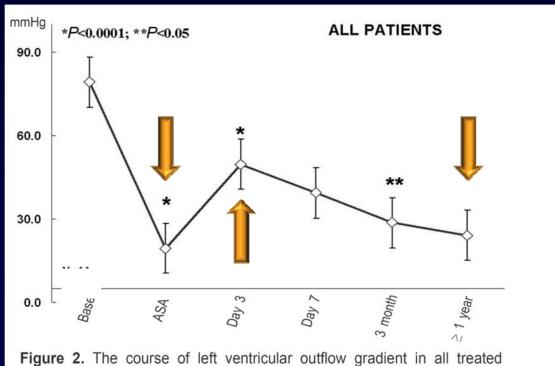


Figure 2. The course of left ventricular outflow gradient in all treated patients

Table 1. Major clinical and hemodynamic parameters before and after alcohol septal ablation.

			LVOT gradie (mmHg)	ent			Exercise test	
	NYHA class	Base	Valsalva	Exercise test	IVS (mm)	MR Severity	Duration (min)	BP Score
Pre-ASA	3.4±0.4	80±30	111±38	98±50	19±2.0	3.8±1.5	2.6±1.4	1.5±0.6
Follow-up	1.9 ± 0.7	24±20	28±35	27±17	17±2.8	1.1±0.3	6.5±2.9	0.6±0.6
P	< 0.00002	< 0.003	< 0.0004	< 0.002	< 0.008	< 0.0007	< 0.0004	< 0.005

ASA = alcohol septal ablation, BP = blood pressure, IVS = interventricular septum, LVOT = left ventricular outflow tract, MR = mitral regurgitation, NYHA = New York Heart Association. For mitral regurgitation severity and blood pressure response scoring see text.

8 days post procedure

Septal Damage Size Decreases Over Time

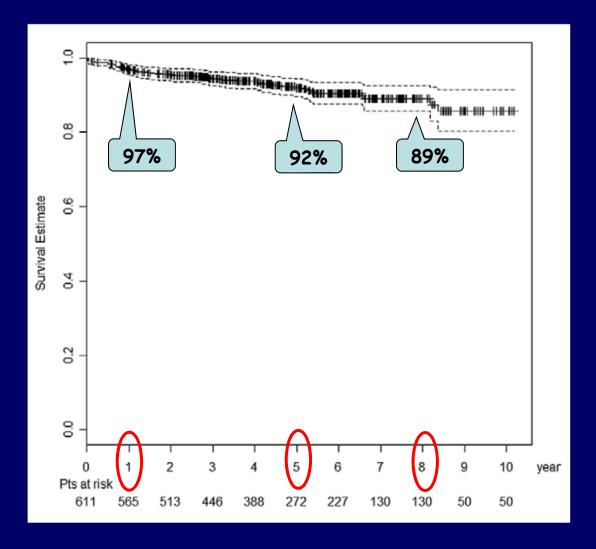
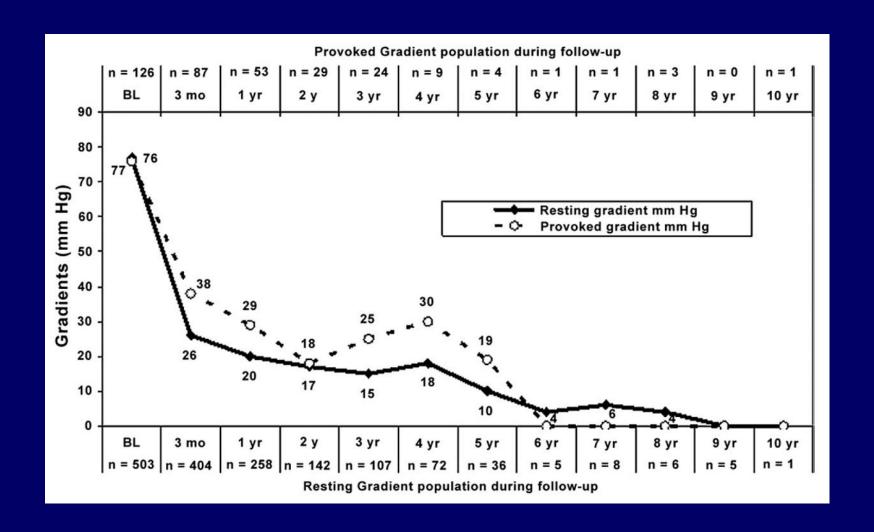
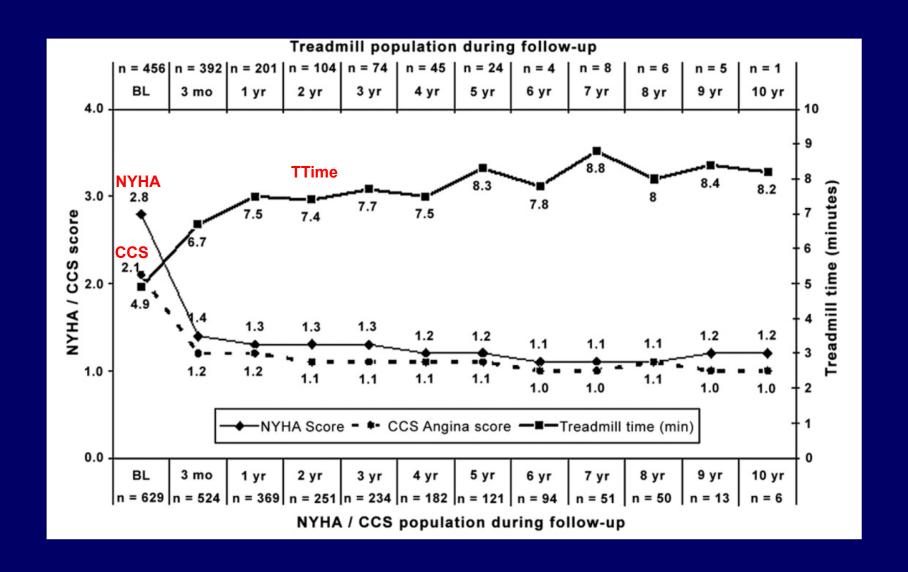

Quantitative Sestamibi SPECT

Figure 3. Septal defect size as a percent of the left ventricle assessed by automated polar maps early and late after alcohol septal ablation in 30 patients. A septal defect in perfusion imaging is detected early after alcohol septal ablation but tends to decrease in size when assessed late after ablation. Data represented as mean \pm SD (bold).


ASA: The Baylor and Medical University of South Carolina Experience 1996 - 2007


619 pts, Follow up of 4.6±2.5 years

Fernandes VL et al. JACC:Cvasc interventions 2008;1:561-570

Decrease in LVOT Gradient

Results of ASA

 Table 1
 Clinical parameters at baseline and following alcohol septal ablation

	Alam M ^a [22] n=2959	Faber L ^b [33] n=312	Seggewiss H ^b [34] n=100
Age, years	53.3 ± 0.1	54±15	52 ± 15
Males (%)	53	59	50
Follow-up (months)	12.7 ± 0.3	12	58 ± 14
Prior pacemakers (%)	10	6	5
Prior myectomy (%)	3.5	3	2
Prior ICD (%)	2.7	1	NA
Beta-blockers (%)	51	36	36
Calcium channel blockers (%)	53	59	62
Other drugs (%)	30	25	NA
NYHA prior to ASA post ASA	2.9 ± 0.01 1.2 ± 0.01	2.9 ± 0.4 1.5 ± 0.7	2.5 ± 0.6 1.6 ± 0.7
CCS prior to ASA post ASA	$1.9 \pm 0.01 \\ 0.4 \pm 0.02$	1.7 ± 1.3 0.9 ± 0.9	1.9 ± 1.3 NA
Syncope and presyncope (%) (prior to/post ASA)	32/NA	34/NA	31/1
Exercise capacity (seconds) prior to ASA post ASA	325±2 437±4	NA NA	366 ± 198 564 ± 174
Exercise capacity (watts)			
prior to ASA	86 ± 0.4	94 ± 51	90 ± 99
post ASA	123 ± 1.6	119 ± 40	121 ± 45
Clinical improvement post ASA (%)	89	91	96
Repeat ASA (%)	7	5	0
Myectomy post ASA (%)	2	1	0
Pacemakers post ASA (%)	11	7	10
Death: periprocedural (%) late, cardiovascular (%)	1.5 0.4	1.3 0.7	1 2

 $^{^{\}rm a}$ Values given as mean \pm SEM; $^{\rm b}$ values given as mean \pm SD

Pauschinger M, Keren A. . Editorial. Clin Res Cardiol, 96:851-5, 2007

Alam M et al. J Interv Card;19:319-324,2006.

Faber L, Welke D, et al Clin Res Cardiol, 96:864-73.2007.

Seggewiss H, Rigopoulos A, et al Clin Res Cardiol, 96:856-63.2007

Main Results of ASA

- Highly effective (85-90%) in improving:
 - the hemodynamic parameters (gradient, MR)
 - symptoms
 - exercise capacity (VO2 max)
 - BP response to exercise and syncopes
- Periop mortality 1-2%, Pacemakers 10-20%, re-do procedures 5-10%

Major Points to be Discussed

- Indications and Main Results of ASA
- Does ASA induce an Arrythmogenic Scar?
- How do the results of ASA compare with SM?
- Are ASA and SE just competitive or complementary procedures?

Increase in Sudden Death Rate Due to the Arrhythmogenic Scar After ASA?

Maron BJ, Spirito P, Shen WK, et al. JAMA 2007;298:405-412

506 pts with HCM and ICD, were followed for 3.7 years

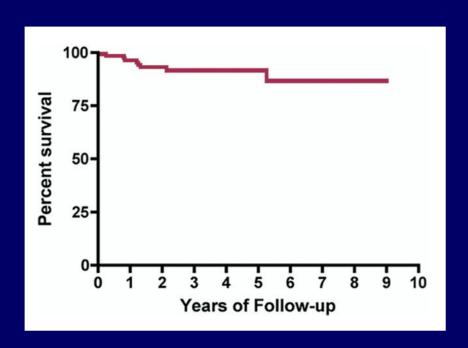
Intervention rate: Primary prevention

y prevention 3.6%/year

Secondary prevention

10.6%/year

ICD discharges of 10.4%/year in ASA (4/17pts) c/w 2.6%/year in SM (6/50pts)


"The results suggest that ASA may increase the risk of sudden death in some patients with HCM"

Is There an Arrhythmogenic Scar After ASA?

Cuoco FA, Spencer WH, Fernandes VL et al. J Am Coll Cardiol 2008;52:1718-1723

123 consecutive pts with ASA with ICD for primary prevention

2.8% annual event rate (1.5 mean risk factors/pt for SCD)

"The results suggest that ASA is not proarrhythmic"

Major Points to be Discussed

- Indications and Main Results of ASA
- Does ASA induce an Arrythmogenic Scar?
- How do the results of ASA compare with SM?
- Are ASA and SE just competitive or complementary procedures?

Alcohol Septal Ablation vs Myectomy: the Mayo Clinic Experience

	Ablation Patients (n=177)	Myectomy Patients (n=177)	Р
Age, y	63±13	62±12	0.17
Women, n (%)	102 (58)	102 (58)	0.99
NYHA class III/IV, n (%)	177 (100)	133 (75)	< 0.000
CCS class III/IV, n (%)	34 (19)	50 (28)	0.07
Syncope, n (%)	27 (15)	30 (17)	0.78
Past medical history, n (%)			
Atrial fibrillation	28 (16)	22 (12)	0.29
Previous stroke	4 (2)	2 (1)	0.23
Hypertension	91 (51)	27 (15)	< 0.000
Diabetes mellitus	13 (7)	3 (2)	0.02
Coronary artery disease	24 (14)	7 (4)	0.002
Previous myectomy	3 (2)	0 (0)	0.08
Previous septal ablation	0 (0)	1 (1)	0.32
Family history of HCM, n (%)	31 (18)	23 (13)	0.18
Family history of sudden death due to HCM, n (%)	10 (6)	17 (10)	0.20
Morphology, n (%)			0.15
Asymmetric hypertrophy	130 (73)	120 (68)	
Concentric hypertrophy	41 (23)	57 (32)	
 Maximum ventricular wall thickness, mm 	23±5	22±7	0.05
End-diastolic diameter, mm	45±6	45±6	0.07
End-systolic diameter, mm	25 ± 5	24±5	0.53
Resting LVOT gradient, mm Hg	70 ± 40	67±40	0.41
≥50 mm Hg, n (%)	121 (68)	118 (66)	0.73
Internal cardioverter-defibrillator, n (%)	8 (5)	12 (7)	0.40
Permanent pacemaker, n (%)	6 (3)	31 (18)	0.01
Medications, n (%)			
eta-receptor antagonist	129 (73)	102 (58)	0.000
Calcium-channel blocker	66 (37)	86 (49)	0.07
Disopyramide	12 (7)	21 (12)	0.13
Amiodarone	6 (3)	14 (8)	0.08

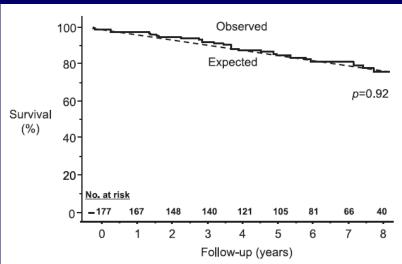

Alcohol Septal Ablation vs Myectomy: the Mayo Clinic Experience

Table 2. Acute Procedural Results and 30-Day Clinical Events					
	Ablation Patients (n=177)	Myectomy Patients (n=177)	Р		
No. septal arteries injected, mean±SD	1.1±0.4				
Volume of ethanol injected, median (IQR), mL	1.8 (0.5)				
Residual LVOT gradient at rest, median (IQR), mm Hg	11 (15)	5 (5)	0.001		
Reduction in LVOT gradient, %	85±16	88±19			
Procedural and in-hospital complications, n (%)	51 (28.8)	10 (5.6)	<0.0001		
 Pacemaker dependency 	36 (20.3)	4 (2.3)			
Cardiac tamponade	6 (3.3)	1 (0.6)			
Sustained ventricular tachycardia	3 (1.7)	0			
Cardiac surgery	2 (1.1)	2 (0.6)			
Resuscitated sudden cardiac arrest	2 (1.1)	1 (0.6)			
Pneumothorax	1 (0.6)	2 (1.1)			
Stroke	1 (0.6)	0			
▶ Death	2 (1.1)	1 (0.6)	0.32		
Sudden cardiac death	1 (0.6)	0			
Heart failure	1 (0.6)	1 (0.6)			

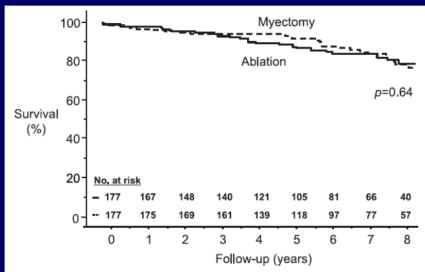

After Procedure			
	Ablation Patients (n=177)	Myectomy Patients (n=177)	Р
Permanent pacemaker implantation, n (%)	3 (1.7)	2 (4.3)	0.65
ICD discharge for VT or VF, n (%)	1 (0.6)	0 (0.0)	
Septal ablation, n (%)	5 (2.8)	0 (0.0)	
►Cardiac surgery, n (%)	15 (8.5)	2 (1.1)	0.0001
Surgical myectomy	10 (5.6)	1 (0.6)	
Coronary artery bypass grafting	1 (0.6)	0 (0.0)	
Ascending aortic aneurysm repair	1 (0.6)	0 (0.0)	
Aortic valve replacement	1 (0.6)	1 (0.6)	
Pericardiotomy	1 (0.6)	0 (0.0)	
Mitral valve repair	1 (0.6)	0 (0.0)	
Death, n (%)	24 (13.5)	24 (13.5)	0.99
Noncardiac cause	11 (6.2)	15 (8.5)	
Unknown cause	12 (6.8)	7 (4.0)	
Sudden cardiac death	3 (1.7)	3 (1.7)	

Table 3. Clinical Events During Follow-Up Beyond 30 Days

Alcohol Septal Ablation vs Myectomy: the Mayo Clinic Experience

Figure 1. Survival free of all-cause mortality for patients with septal ablation (observed). Expected survival was calculated from age- and sex-specific mortality rates obtained from the US general population.

Figure 2. Survival free of all-cause mortality for patients with septal ablation in comparison with age- and sex-matched population of patients who underwent surgical myectomy.

ASA Vs SM: Mortality

Meta-analysis	Inclusion criteria	Number of studies	Number of Patients	In-hospital mortality	
Zeng, Z. Int.J.Cardiol.	Case control studies comparing ASA	3	ASA: 86	2.3% Vs 1.1%	
2006; 112[1]: 80-84.	with SM in adult HOCM patients		SM: 91	p=?	
				In-hospital mortality	
Alam, M. Eur.Heart J. 2009; 30[9]: 1080-	Case control studies comparing ASA with SM in adult HOCM patients	5	ASA: 183	1.6% Vs 0.6% p=0.2	
1087.	With Sivi in addit Hoely patients		SM: 168) p=0.2	
				30 day all cause mortality (RD)	Long term all cause mortality (RD)
Agarwal, S. J Am Coll Cardiol 2010; 55[8]:	Cohort and case control studies comparing ASA with SM in adult	9	ASA: 380	0.01 (0.01 to 0.03) p=0.35	0.02 (-0.05 to 0.09) p=0.55
823-834.	HOCM patients		SM: 326		
				Annual rate of all cause mortality	Annual rate of SCD
Leonardi, R A.	Reports/studies with ≥5 ASA	19 ASA studies	2207	1.8 (1.2 to 2.6)	0.3 (0.2 to 0.6)
Circ.Cardiovasc.Interv.	patients or ≥100 SM patients	(1996-2007)			
2010; 3[2]: 97-104.		8 SM studies (1963-2005)	1887 #	2.1 (1.7 to 2.7) p=0.36	0.4 (0.3 to 0.6) p=0.37

Alcohol Septal Ablation vs Septal Myectomy in HOCM Meta-Analysis Including 4,094 Patients

Patients: ASA – 2207, SM – 1887;

- Median *follow up ASA 51 vs SM 1266 pt ys
- ASA pts were *older (55 vs 44 years), with less *hypertrophy (21 vs 23 mm)* p<0.001

	Surgical Myectomy, Median (IQR)	ASA, Median (IQR)
NYHA functional class	1.6 (1.5–1.7)	1.5 (1.3–1.7)
LVOT gradient, mm Hg	3 (2–6)	22 (15–23)
Septal wall thickness, mm	17 (17–19)	16 (15–17)
New permanent pacemaker, %	5 (3–9)	11 (8–15)
Patients with an ICD, %	4 (3–4)	5 (4–8)

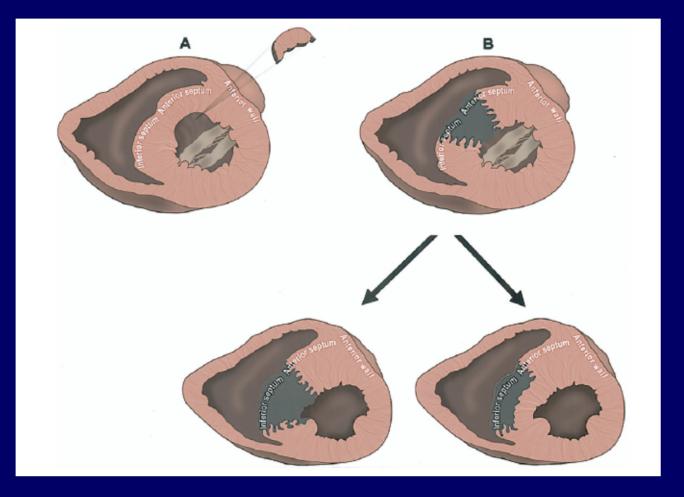
Alcohol Septal Ablation vs Septal Myectomy in HOCM Meta-Analysis Including 4,094 Patients

Surgical Myectomy % ASA % per Patient-Year, Weighted Mean (95% Cl) (95% Cl) All-cause mortality 1.8 (1.2–2.6) 2.1 (1.7–2.7) 0 rate				
Weighted Mean (95% Cl) (95% Cl) (95% Cl) All-cause mortality 1.8 (1.2–2.6) 2.1 (1.7–2.7) 0		Surgical Myectomy %	ASA %	
(95% CI) (95% CI) All-cause mortality 1.8 (1.2–2.6) 2.1 (1.7–2.7) 0.		per Patient-Year,	per Patient-Year,	
All-cause mortality 1.8 (1.2–2.6) 2.1 (1.7–2.7) 0.		Weighted Mean	Weighted Mean	
		(95% CI)	(95% CI)	Р
	•	1.8 (1.2–2.6)	2.1 (1.7–2.7)	0.37
SCD rate 0.3 (0.2–0.6) 0.4 (0.3–0.6) 0.	SCD rate	0.3 (0.2-0.6)	0.4 (0.3-0.6)	0.36

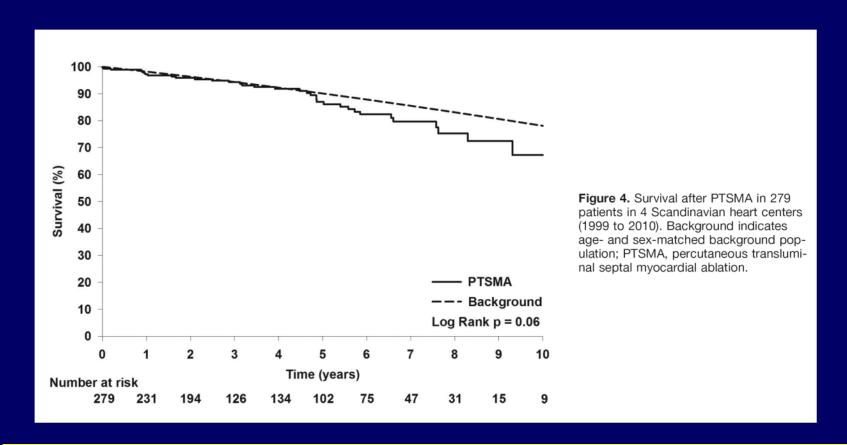
After adjustment for baseline characteristics, odds ratios were lower for ASA than for SM for all-cause mortality 0.28 (95% Cl 0.16 to 0.46) and for sudden death 0.32 (95 Cl 0.11 to 0.97)

Septal Ablation vs Myectomy

- Anatomy
 - Severity of hypertrophy
 - Coronary Arteries
 - Mid-cavity obstruction
 - Intrinsic Mitral Valve abnormalities
 - Subaortic membrane
- Co-morbidities
- Age
- Patient choice
- Medical/Surgical Experience


CONCLUSIONS ON ASA

- · Can be alternative to myectomy in selected pts unresponsive to medical therapy
- · Has immediate and intermediate term results comparable with myectomy but long term safety is still not known
- · Current data do not support the hypothesis of increased sudden death rate following ASA
- · The 2 procedures are complementary



Thank you

CMR imaging pre/post (3-7 days) SM or ASA (24 pts each group) In ASA necrotic area was 8+/-4% of LV mass (16+/-7g)

Does ASA Shorten Life?

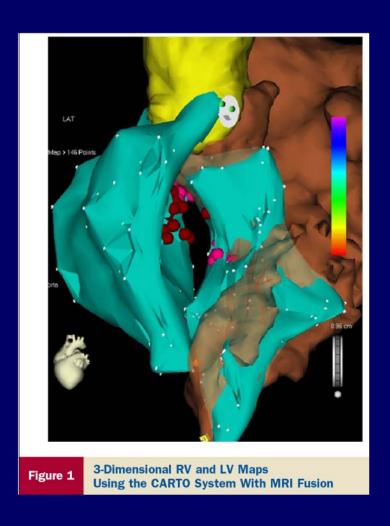
The 10-years survival was similar to that in an age and sex matched background population, age was the only predictor of survival

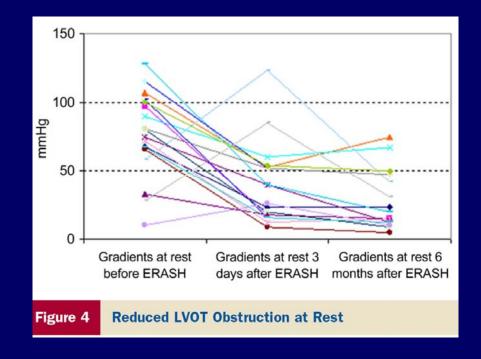
ASA vs MYECTOMY: a META-ANALYSIS

-5 CASE CONTROLLED NONRADOMIZED STUDIES

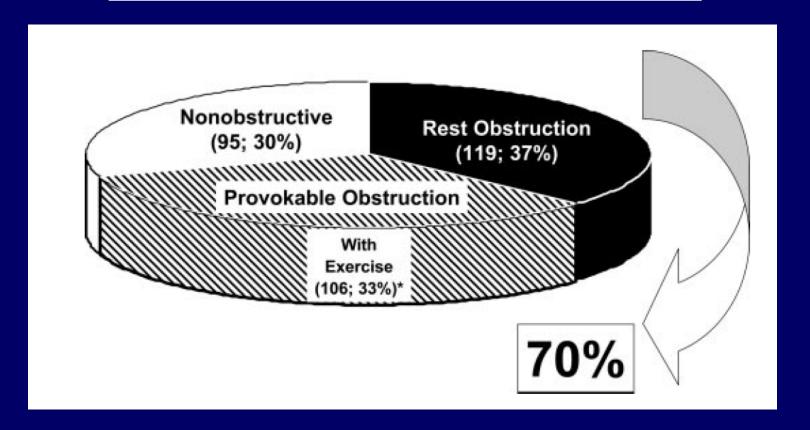
- 183 pts had ASA and 168 SM (total 351 pts), follow up 21 vs 25 months
- ASA pts: older (54 vs 45 MEAN AGE, p=0.02)
- Similar: NYHA 2-4, LVOT gradient (75-80 mmHg)
- Outcome: > pacemakers in ASA (18.4 vs 3.3, p=0.04)
 - > LVOT residual gradient in ASA (18 vs 10 mmHg, p<0.001)
 - > reinterventions in ASA (5.5% vs 0.6%)
 - = \triangle NYHA, \triangle VO2 max increase on exercise, Survival

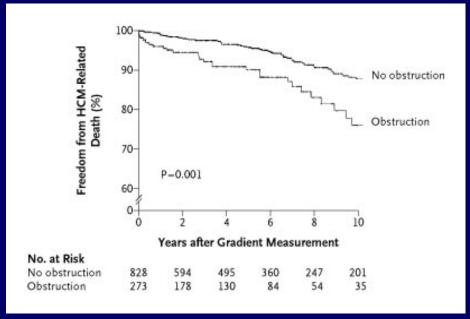
Major Points to be Discussed

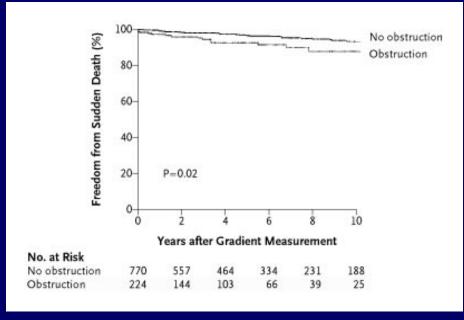

- Indications and Main Results of ASA
- Does ASA induce an Arrythmogenic Scar?
- How do the results of ASA compare with SM?
- Are ASA and SE just competitive or complementary procedures?


Alternative approaches: old and new

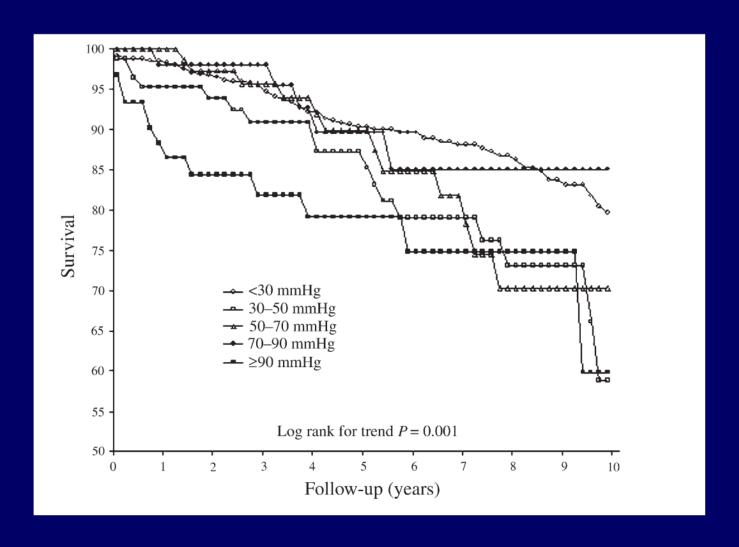
- MVR
 - Z Krajcer. Circ 1989;80:I57-I64
- Alfieri stitch
 - D Sado. Circ 2010;122;938-939
- Papillary muscle re-orientation
 - Kwon DH. J Thor Cardio Surg 2010;140:317-324
- Radiofrequency septal ablation
 - T Lawrenz. JACC 2010: 57;572-576


Endocardial Radiofrequency Septal Ablation




Hypertrophic Cardiomyopathy Is Predominantly a Disease of Left Ventricular Outflow Tract Obstruction

Martin S. Maron, MD; Iacopo Olivotto, MD; Andrey G. Zenovich, MSc; Mark S. Link, MD; Natesa G. Pandian, MD; Jeffery T. Kuvin, MD; Stefano Nistri, MD; Franco Cecchi, MD; James E. Udelson, MD; Barry J. Maron, MD


LVOT Gradient - a Risk Factor with Very Low PPV (~7%)

Maron MS, Olivotto J et al. NEJM 348 (4): 295, 2003

Presence and Severity of LVOT Gradient Correlate with Survival and Sudden Death

