Assessment of Left Sided Filling Dynamics in Diastolic Dysfunction using Cardiac CT

Schweitzer A*, Walker JR, Agmon Y, Abadi S, Carasso S, Aronson D, Mutlak D, <u>Lessick J</u>. Rambam Health Care Campus and Techion, Israel Institute of Technology, Haifa

*Part of MD dissertation

Conflicts of Interest

- None relating to the presentation
- Consultant for Samsung medical division

Background

- Left ventricular (LV) diastolic dysfunction (DD) involves a complex interaction between LV and left atrial (LA) filling dynamics.
- Until now, it has not been possible to easily obtain simultaneous LV and LA volume curves to perform this analysis.

Aim

- To analyse CT-based filling dynamics in a group of patients with diastolic dysfunction and in a normal control group, compared to Echo-Doppler.
- To define the parameters which best differentiate between normal and abnormal diastolic function
- To obtain a better understanding of the pathophysiology of diastolic dysfunction

Methods I

- 40 patients with various grades of DD by echo-Doppler, using ASE criteria, and cardiac CTA within 1 month.
- 37 normal controls.

Patient Characteristics

	Normals (37)	All DD (40)	Mild DD (10)	Mod DD (20)	Severe DD (10)
Age	57 ± 11	64 ± 12	63 ± 9	70 ± 9	52 ± 14
Male	51%	55%	60%	50%	60%
BSA	1.88 ±0.17	1.95 ±0.18	1.98 ±0.17	1.88 ±0.18	2.06 ±0.14
Diabetes	14%	40%	20%	45%	50%
HTN	46%	90%	100%	95%	70%
CAD	5%	55%	70%	40%	60%
FC>I	0%	45%	20%	45%	70%

Methods II

- LV and LA volumes were measured every 10% of the RR interval, using semi-automatic software, and end-diastole (ED), end-systole (ES) and mid-diastole (MD) identified.
- From these 3 volumes, systolic, early-diastolic and late-diastolic volume changes were calculated.

Segmentation of volumes

Left Atrial Function

Atrial filling:

Systolic filling volume (S)

Diastolic filling and emptying volumes (E

Atrial emptying volume (A)

Pulmonary vein inflow/

Mitral Valve outflow

 $S = \Delta Atrial V (ES-ED)$

 $A = \Delta Atrial V (MD-ED)$

D= E - ΔAtrial V (ES-MD)

Ventricular early filling

Ventricular Early Atrial
Systole Filling Contraction
(Atrial filling) ↑ (Emptying)

Atrium fills & empties simultaneously

Atrial Function

Results (Echo-Doppler)

Parameter	All Normals	DD-AII	p (N vs.DD)	DD-Mild	DD-Mod	DD-Severe
Echo E/A	1.1±0.4	1.4±0.9	0.14	0.7±0.1	1.1±0.4	2.6±1.0
Echo E/E'	8.3±1.6	16.8±7.4	<0.001	11.1±3.3	17.8±6.2	20.2±9.8
E	72±10	87±9	<0.001	56±8	92±18	108±25
DT	203±44	195±56	ns	233±51	207±45	135±25
LA area	17±3	24±4	<0.001	20±3	25±3	27±3
Est. PAP	29±5	41±12	<0.001	30±6	39±9	52±12

DT=Deceleration time, LA=Left atrium, PAP=pulmonary artery pressure

Results – CT Volumes

Summary of Results - CT

- Patients with DD had larger LV volumes and mass and lower ejection fraction (LVEF) than controls.
- They had significantly larger LA volumes and significantly worse LA function, manifesting as reduced early, late and total emptying fraction (LATEF) and increased conduit volume as a % early LV filling (%CV/E).

Results Table - CT

Parameter	All Normals	DD-AII	p (N vs.DD)	DD-Mild	DD-Mod	DD-Severe
CT LAMDV	70±15	106±23	<0.001	93±20	107±23	116±21
CT LATEF	43.6±8.3	28.8±10.1	<0.001	34.3±9.5	30.5±8.5	19.9±8.3
LA EEV	16.4±7.1	10.8±6.5	<0.001	11.5±7.6	10.9±6.2	9.9±6.5
Conduit V	43.4±11.2	48.0±13.7	0.1	51.9±9.9	47.6±14.7	45.0±15.4
CT %CV/E	72±11	83±10	<0.001	84±11	83±10	81±11
LA AEV	21.3±4.5	21.9±8.9	ns	25.0±8.4	24.1±7.7	14.6±8.5
CT LV mass	108±25	170±66	<0.001	165±68	146±43	223±77
CT LVEF	62±5	52±16	<0.001	60±13	53±14	43±18

LAMDV=LA mid-diastolic volume, LATEF = LA total emptying fraction, %CV/E=conduit volume as % of early filling volume

Presumed Pathophysiology

 TLVP and delayed LV relaxation in early diastole LA elastic recoil reduced (reduced LA compliance) Compensatory \(\gamma\) conduit V (and atrial kick) ↑ratio CV/(LV E filling) ↓Atrial kick d/t atrial systolic failure in advanced

stage

ROC analysis: N vs. DD

LA MD volume

AUC = 0.92

LATEF

AUC = 0.88

%CV/E

AUC = 0.77

Classification: Normal vs. Abnormal

- Logistic regression found LA MD volume, LV mass and early-diastolic emptying fraction to be independent predictors of DD.
- Logistic regression utilizing these parameters has 90% accuracy to separate between normal and abnormal diastolic function.

Conclusion

- Diastolic dysfunction is characterized by significant LA enlargement as well as reduced LA function, which worsens with worsening DD.
- CT can help detect and characterize DD, mainly via its effect on LA emptying dynamics.