Benefits and pitfalls of genotyping HCM in cardiomyopathy clinic

Michael Arad¹, Lorenzo Monserrat², Jonathan G Seidman³, Christine E Seidman³, Eloisa Arbustini⁴, Vardiella Meiner⁵, Michael Glikson¹ and Dov Freimark¹

¹Leviev Heart Center, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv, Israel ² Complejo Hospitalario Universitario de A Coruña, A Coruña, Spain ³Department of Genetics, Harvard Medical School, Boston, USA ⁴Centro Malattie Genetiche Cardiovascolari, University of Pavia, Pavia, Italy ⁵Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Hospital, Jerusalem, Israel

The Annual Meeting of Israel Heart Society, Jerusalem 2013

Disclosures

The presenter reports no disclosures or conflicts of interest

Introduction

- Hypertrophic cardiomyopathy is considered to be a familial disease with autosomal dominant inheritance and age dependent penetrance, usually caused by mutations in genes encoding the sarcomere proteins.
- Family history may be established in at least 50% of the patients. In others familial clustering can be detected through family members' screening and longitudinal follow up.
- Disease-causing mutations may be found in up to 70% of families with HCM.

Introduction (II)

Recommendation on genetic testing, 2011 ACCF/AHA Guideline, Gersh et al.

Class I (level B)

- > Evaluation of familial inheritance and genetic counseling is recommended as part of the patient assessment
- ➤ Patients who undergo genetic testing should also undergo counseling so that results and their clinical significance can be appropriately reviewed
- > Screening (clinical, with/without genetic testing) is recommended in first-degree relatives of patients with HCM
- ➤ Genetic testing for HCM and other genetic causes of unexplained cardiac hypertrophy is recommended in patients with an atypical clinical presentation or when another genetic condition is suspected

Class IIa (level B)

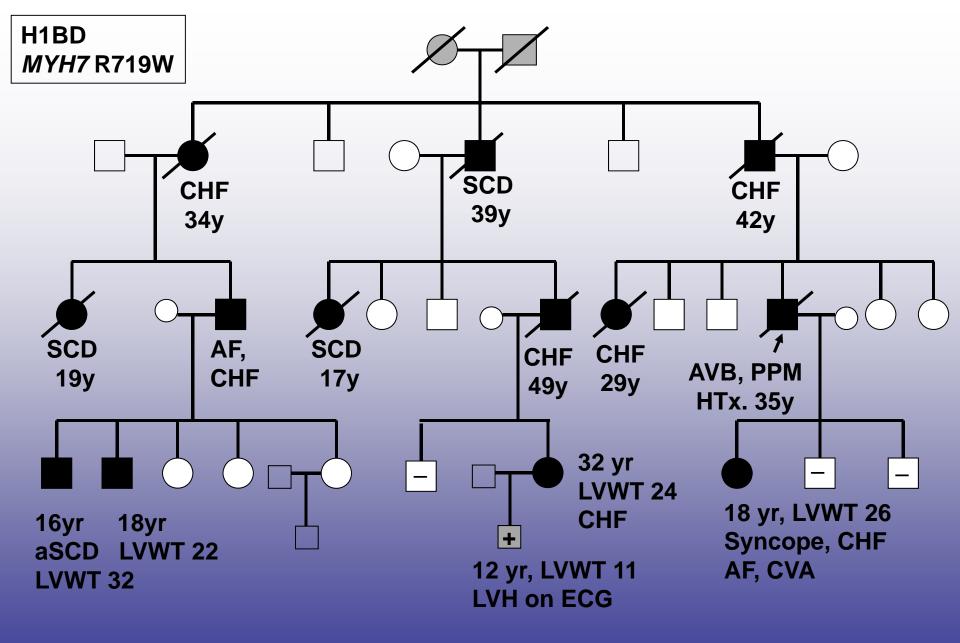
➤ Genetic testing is reasonable in the index patient to facilitate the identification of first-degree family members at risk for developing HCM

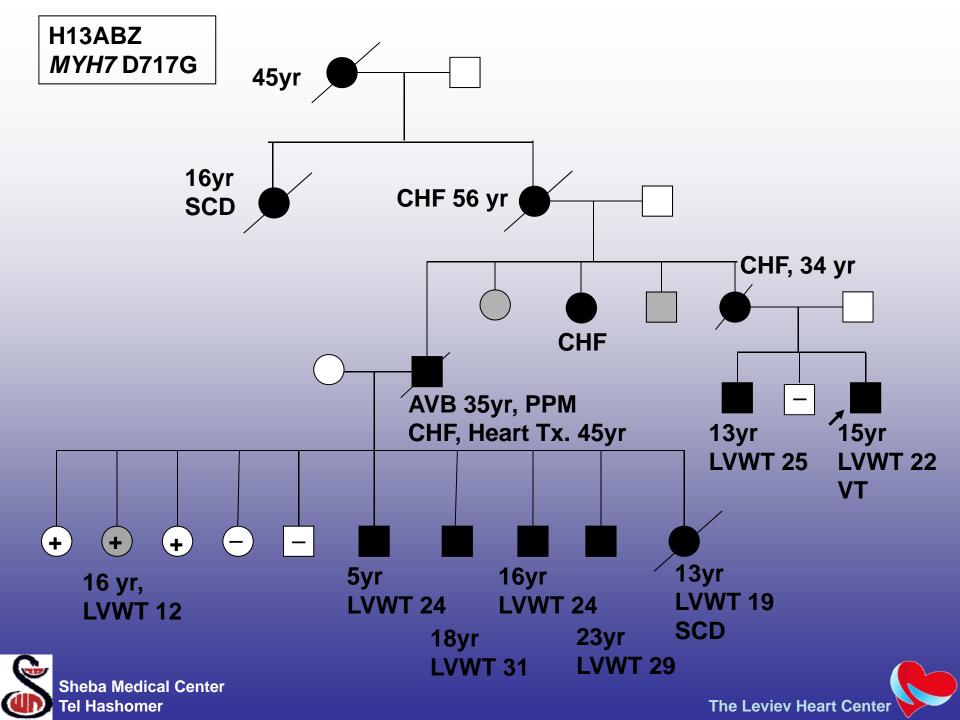
Purpose

• To assess the effect of genetic diagnosis on clinical HCM management in cardiomyopathy clinic

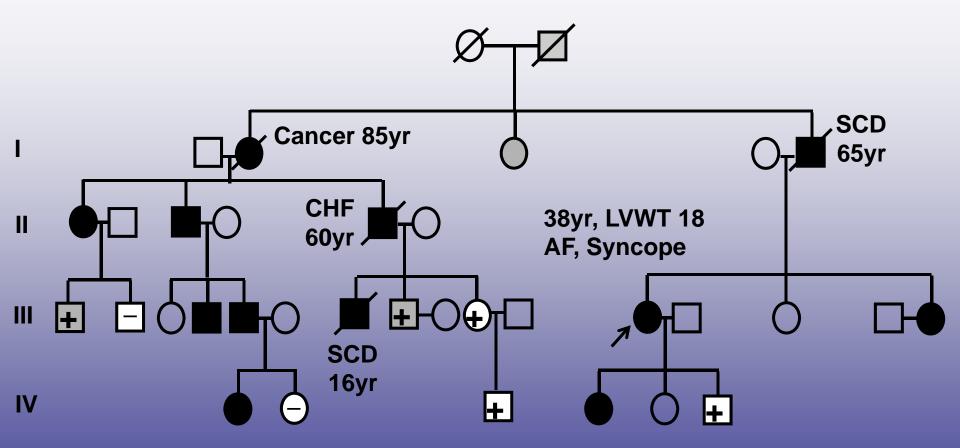
 To evaluate the compliance of the relatives with the recommendation to undergo testing for the mutation found in HCM family

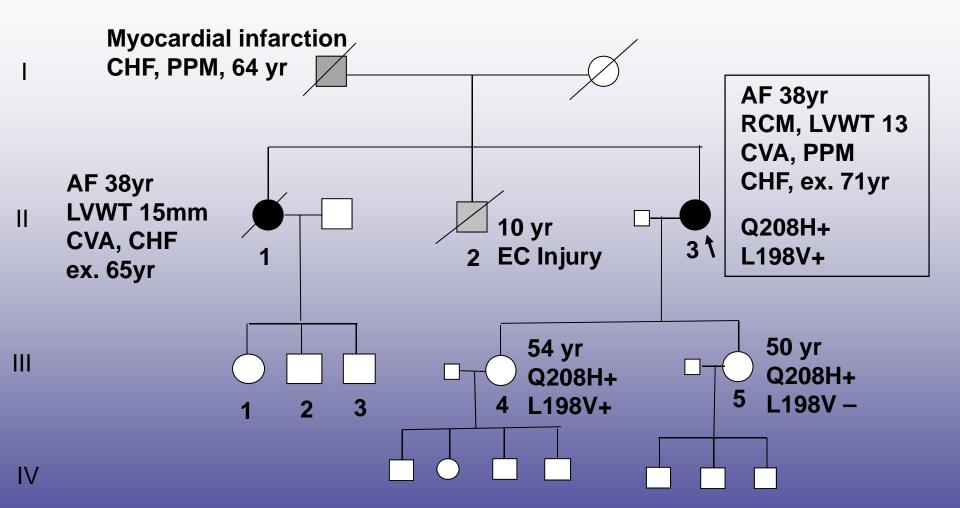
Methods


- Cardiomyopathy Clinic of Leviev Heart Institute in Sheba Medical Center, listing at the moment of data analysis 360 HCM patients from 296 families.
- Patients and family members received genetic counseling and signed an informed consent when appropriate.
- Genetic diagnosis was established between 2004 and 2011 allowing at least 1 year of follow up after the test results were made available to the family.
- Results were accepted from research studies or from a certified genetic laboratory. Once mutation was found, genotyping of first degree family members was encouraged.
- Data on testing family members and on the clinical application of the genetic results was collected (descriptive and Chi square).


Results: Clinical Characteristics

Family/	Indication/	Age of	Disease Features					
Proband	Reason for	onset	Massive		Sudden	Severe	Heart	Other
	referral		LVH	Obstruct.	Death	CHF	Tx.	
H1BD	Severe Phenotype	teenage	Yes		Yes	Yes	Yes	CSD
H7YY	Severe Phenotype	adult		Yes		Yes	Yes	
H13ABZ	Severe Phenotype	teenage	Yes		Yes	Yes	Yes	CSD
H18HF	Unique Phenotype	teenage	Yes			Yes		
H29OD	Family Request	elderly				Yes		CSD
H145RR	Unique Phenotype	elderly				Yes		Pulmon. A-V mal
H150SN	Reproductive Counseling	teenage			Yes			
H171GA	Sudden Death	teenage			Yes	Yes		
H268LJ	Patient's Request	adult						





H171GA *MYH7* V606M

H29OD *MyBPC3* Q208H, *TNNI3* L198V

1

7

0

0

0

1

8

0

0

1

0

0

0

1

3

0

2

0

0

0

2

0

1+1*

6

4

0

0

0

4

0

Results: Genetic Testing								
Family	Mutation	No. of clinically	Family members	Clinical status and genotyping results in family members				
		affected	tested (%)	Affected & Positive	Unknown & positive	Non-affected & positive	Healthy & Negative	
H1BD	MYH7	6	7/12 (58)	3	1	0	3	

9/14 (64)

14/23 (61)

0/7 (0)

2/12 (17)

0/2(0)

3/3 (100)

17/22 (77)

0/2(0)

H7YY

H13ABZ

H₁₈HF

H29OD

H145RR

H150SN

H171GA

H268LJ

R719W

R35W

MYH7

R1344Q

MyBPC3

MyBPC3

G596R TNNT2

E163del

Q208H;

MyBPC3

MYH7 R717G

TNNI3 L198V

MYH7 V606M 10

MYH7 E497D

2

1

1

3

Results: What determines the % of family members willing to be tested?

- Higher rate in families with history of sudden cardiac death (p<0.001).
- Related to the number of clinically affected family members (p=0.003). No motivation in families with what appears to be a sporadic disease.
- Young age of disease onset (p=0.002). No motivation in families with elderly onset disease.
- No relationship to severe heart failure or family history of heart transplantation.

Results: Clinical Applications

Family/	Mutation	Testing	Clinical use of genetic diagnosis				
Proband	Proband		Ascertain	Prenatal	Prognostic	ICD	
			Diagnosis	Diagnosis	information	implant	
H1BD	MYH7 R719W	Research	Y	Y	Y		
H7YY	MyBPC3 R35W	Research	Y				
H13ABZ	MYH7 R717G	Research	Y	Y	Y		
H18HF	MYH7 R1344Q	Research					
H29OD	MyBPC3 Q208H;	Service			Y		
	TNNI3 L198V						
H145RR	MyBPC3 G596R	Research					
H150SN	TNNT2 E163del*	Service	Y	Y	Y	Y	
H171GA	MYH7 V606M	Research	Y			Y	
H268LJ	MYH7 E497D	Service					

Mutation has been previously described and there is clinical information available

* - TNNT2 E163del previously found in 13 families, 43 subjects, 15 cases of sudden death

Conclusions

- Genetic studies may improve the diagnosis and prognostic evaluation in HCM.
- The high recurrence rate of mutations in different families allows to apply the clinical information from the literature to risk-stratification of individual patients.
- Compliance with genetic testing was higher in families with sudden death and low in sporadic HCM or elderlyonset disease.
- Genetic diagnosis helps to resolve uncertainties over borderline phenotypes but may also lead to highly controversial decisions.
- We suggest that the clinical context should determine the indication and the interpretation of the genetic analysis.

