

Comparison of LV Mass as Derived by Echocardiography and Cardiac CT as a Function of Age

Yehoshua Stokar, Ronen Durst, David Leibowitz, Ayelet Shauer, Lena Milovanov, Dorit Shaham, Dan Gilon, **Donna Zfat-Zwas**

Conflict of interest

None

Increased LV mass as measured by echocardiography is an independent risk factor for increased cardiovascular and cerebrovascular events, including excess mortality.

Prevalence of LVH as a function of Age: Echo

Levy et al. The Framingham Heart Study. Annals of Internal Medicine. 1988

Women

Age	Normal	Mild LVH	Moderat e LVH	Severe LVH
<20	86.8	10.5	2.6	0
(N=38)				
20-29	81.4	9.9	3.9	4.8
(N=413)				
30-39	74.7	9.6	6.6	9.1
(N=560)				
40-49	67.2	11	7.3	14.4
(N-J/2)				
50-59	63.6	13	7.7	15.7
(N=1264)				
60-69	56.8	14.6	11.3	17.2
(N=1092)				
70-79	54	14.7	10.6	20.7
(N=1139)				
80-89	50	12.7	11.6	25.7
(N=739)				
90 +	53	11.2	6.1	29.6
(N=115)				A Francis Football

Men

Age	Normal	Mild LVH	Moderat e LVH	Severe LVH
<20	94.3	5.7	0	0
(N=35)				
20-29	87.7	4.7	2.4	5.2
(N=211)				
30-39	77.9	6.7	4.7	10.7
(N=401)				
40-49	69.3	8.7	7.5	14.4
(N=756)				
50 59	69.1	16.8	8.2	11.9
(7 = 1116)				
60-69	66	13.3	9	11.7
(N=1164)				
70-79	62.6	13.3	8.4	15.8
(N=1054)				
80-89	61.7	12.1	10.6	15.6
(N=531)				
90 +	55.8	14	16.3	14
(X=43)				

Zwas et al. 2007

MRI and CT assessments of LV Mass are considered more precise and reliable than echocardiographic assessments of LV mass:

- oimproved endocardial definition
- omass calculation does not utilize geometric assumptions regarding ventricular shape

MRI studies have not demonstrated a similar increase in LV Mass with age

These studies do demonstrate an increased mass: volume ratio with aging.

Poor prognosis was only seen with very severely increased LV mass.

Cheng et al. Circ Cardiovasc Imaging. 2009

Purpose of study

- To evaluate the correlation between LV mass measurement on echocardiographic and CT studies as a function of age
- To elucidate the discrepancy seen between cardiac imaging modalities

Methods and study design

- Same-subject modality comparison study
- Candidates: patients age 18 and up who underwent a cardiac gated-CT scan and echocardiography for clinical indications within 6 months of each other between January 2010 and January 2013 were included.
- Exclusion criteria: imaging that didn't allow for necessary calculations

Measurements

Echo measurements

- Performed according to ASE and EAE guidelines
- Measurements included LV wall thicknesses, internal diameter, and all measurements necessary for LVM calculation for Truncated ellipsoid formula and Area-length formula.
- Mid septal wall thickness
- LV Mass was calculated according to the ASE formula:

```
0.8 \times \{1.04[(LVIDd + PWTd + SWTd)^3 - (LVIDd)^3]\} + 0.6 g
```


Cardiac CT measurements

- Performed using step and shoot protocol on Philips 256-slice scanner.
- The Philips MxView LV/RV Analysis application software package was utilized, with manual correction of autosegmentation when necessary.

Results

- 81 patients (♂ 51 ♀ 30)
- 38 ≥ 65 years old (75±7, 65-90)
- 43 <65 years old (45±12, 18-64)

Comparison of LV Mass by Echo and CT

Age <65Age >65

R (total) = 0.8061R (<65) = 0.9058R (≥65) = 0.8163

Comparison of Echo CT correlation using standard vs. midwall measurements

O Age >65

 $R(\geq 65) = 0.9320$

 $R (\geq 65) = 0.8163$

Mountain Plot: Difference Between Echo LV Mass calculated using standard or midwall measurement

LV Remodeling

Age and Base-Apex distance

Age and Proximal: Midwall septal ratio

Remodeling with Aging

Young patient

Older patient

Conclusions

- LVM estimation using standard echocardiographic measurements may overestimate LVM in elderly patients due to LVM remodeling.
- Increased mass to volume ratio may result from shortening of the base-apical length and thickening of the proximal septum.
- Use of mid-wall measurements may correct this overestimation.

Conclusions

- Prognostic information derived from echocardiographic LV mass may reflect the extent of remodelling rather than a true increase in LV mass.
- Further research to better echocardiographically characterize LV remodelling may improve echocardiographic prognostication.

Bland-Altman Analysis

O Age >65