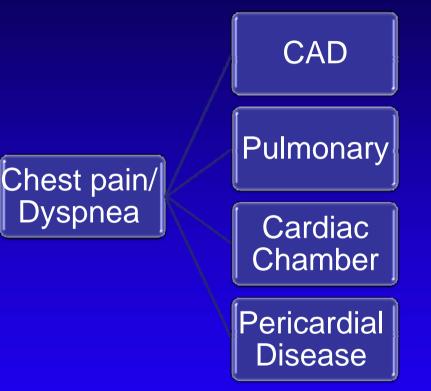

Can Single Phase Prospective Cardiac CT be Used to Detect Abnormal Cardiac Chamber Function?

Walker JR, Abadi S, Agmon Y, Carasso S, Aronson D, Lessick J.

Student: Mr. Jonathan Walker, MSc, MD student Supervisor: Dr. Jonathan Lessick, MD, PhD Rambam Health Campus Technion, Israel Institute of Technology

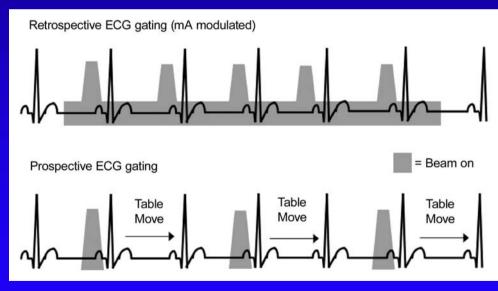
The 60th International Conference of the IHS & ISCS Tuesday, April 23, 2013



No conflicts of interest

Cardiac Computed Tomography Imaging Background

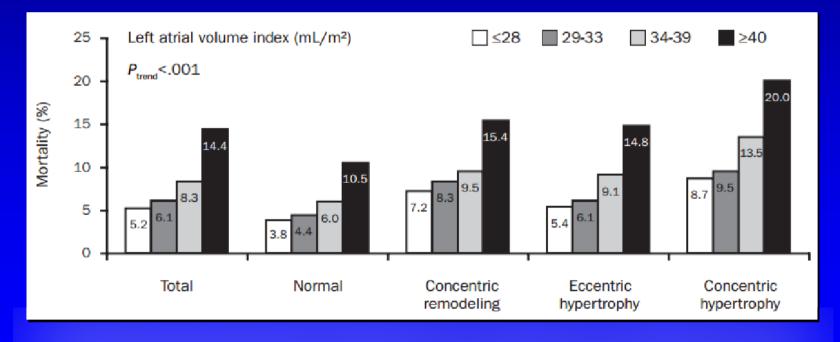
- CT angiography is mainly used to rule out coronary artery disease (CAD) in patients with chest pain and/ or dyspnea. However symptoms may be related to other (non-coronary) disease
- In addition to coronary anatomical assessment, CT provides important diagnostic information regarding chamber function.



Hausleiter J et al. Image quality and radiation exposure with prospective ECG-triggered axial scanning for coronary CT angiography: The multicenter, multiventor, randomized protection-III study. JACC 2012;5(5):485-93.

Cardiac Computed Tomography Imaging Background

- New algorithms reduce radiation exposure while maintaining image quality utilizing a single Mid-Diastolic phase
- Opposed to retrospective ECG gating, prospective axial techniques or flash techniques scan a small portion of the cardiac cycle
- For single-phase techniques functional or volumetric evaluation is not currently possible.



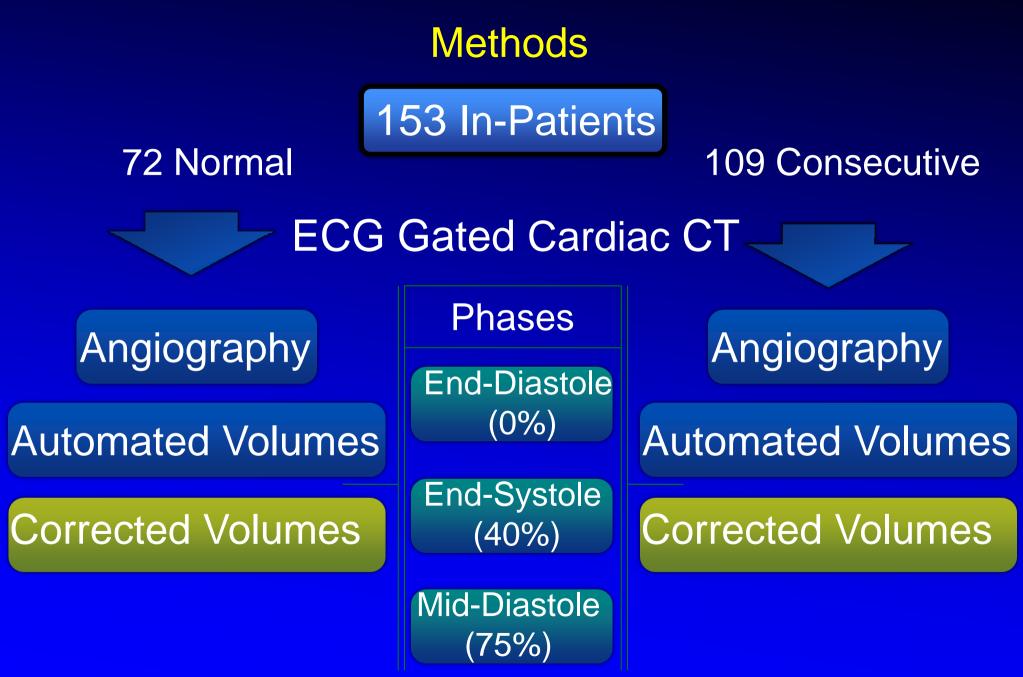
Shuman WP, et al. Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology August 2008 248:2 431-437

Value of LA and LV Chamber Volumes

- Both LV and LA volumes have well documented prognostic value as indicators of morbidity and mortality, even in the presence of a normal EF.
- Reduced EF has well documented prognostic value.

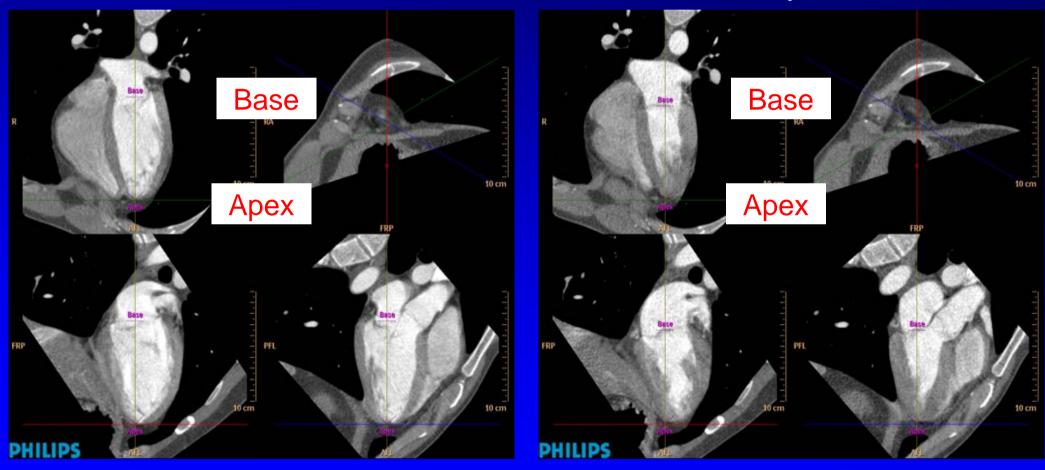
Patel DA et al, Mayo Clin Proc. 2011 86(8):730-7.

The Role of Cardiac CT in Routine Evaluation Why not send everyone to Echocardiography?


- While echocardiography remains the choice for cardiac function assessment, the dual use of CTA and Echocardiography is not costeffective.
- Volumetric assessment in CT using a single-phase may be a costeffective, resource and radiation dose efficient method towards ruling out patients not requiring further cardiac chamber assessment.
- However, normal values for single phase mid diastolic volumes remain to be defined.

Objectives

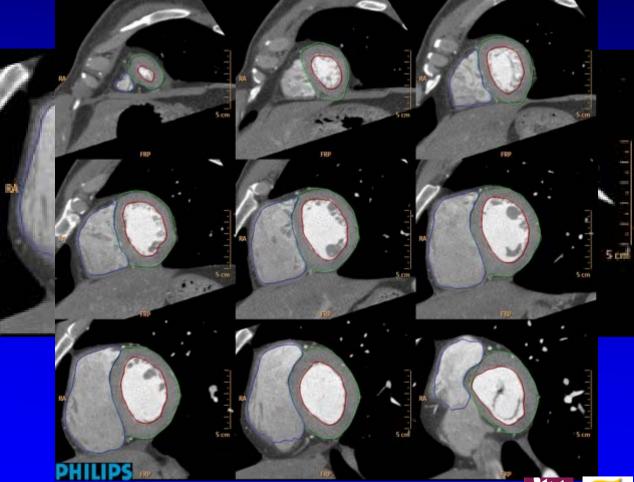
- 1. To define normal values for the left ventricular (LV) and left atrial (LA) at diastasis
- To determine the relationship between diastasis and the well characterized end-diastolic (ED) and end-systolic (ES) volumes
- To determine whether use of these data can be used to identify patients with LV and LA enlargement, and LV dysfunction



Methods Volume tracing: Simpson's

End-Diastole: 0%

End-Systole: 40%



Methods Volume tracing: Simpson's

- 9 slices from base to apex
- Excellent image quality
- Highly accurate in most cases, requiring minor tracing corrections

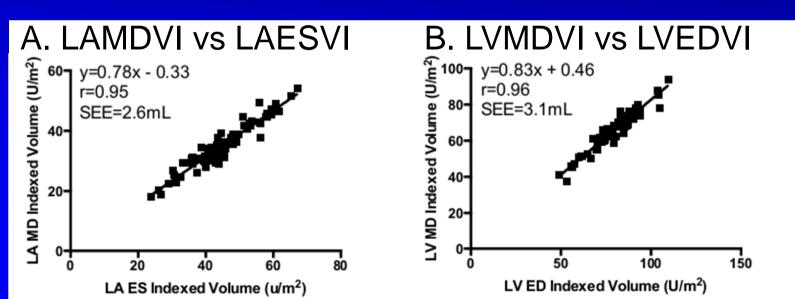
Automated Tracing

Methods Analysis

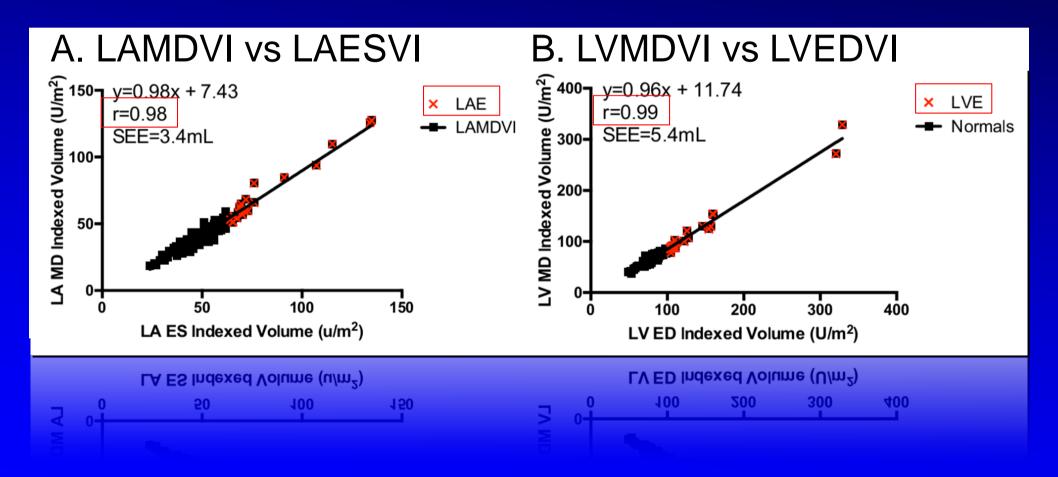
- Abnormal volumes defined as volumes >2sd above the mean.
- LV MD volumes compared to LVED (maximum) volumes.
- LA MD volumes compared to LAES (maximum) volumes.
- We also examined whether increased LV or LA MDV detect LV dysfunction (EF<45%)

Results Clinical Characteristics

Table 1. Clinical characteristics of study population.


Clinical characteristics	Normal (N=72)	Consecutive (N=109)	
Age (years)	46.8±9.3	55.3±11.1	
Gender-Male	71%	74%	
BMI (kg/m²)	27.3±4.6	28.8±4.7	
Smoking history (%)	25 (53)	52 (48)	
Hypertension (%)	0 (0)	55 (50)	
Diabetes (%)	0 (0)	22 (20)	
CAD	0 (0)	28 (26)	
CHF	0 (0)	6 (6)	

Results Normal Volume Values


Table 1. N	Normal Values	s for All Age	and Gender

Parameter	Mean [95%CI]	Indexed Mean [95% CI] U/m2
LVEDV (ml)	155 [101 : 209]	79 [56 : 103]
LVMDV (ml)	128 [82 : 175]	66 [45 : 86]
LAESV (ml)	88 [49 : 126]	45 [27 : 64]
LAMDV (ml)	69 [37 : 101]	35 [20 : 50]

Results Consecutive group LA and LV volumes

Walker JR, Abadi S, Agmon Y, Carasso S, Aronson D, Lessick J. Abstract: Can Single Phase Prospective Cardiac CT be Used to Detect Abnormal Cardiac Chamber Function?

Results

Mid-diastolic Volumes to detect patients with LV or LA enlargement or LV dysfunction (EF<45%)

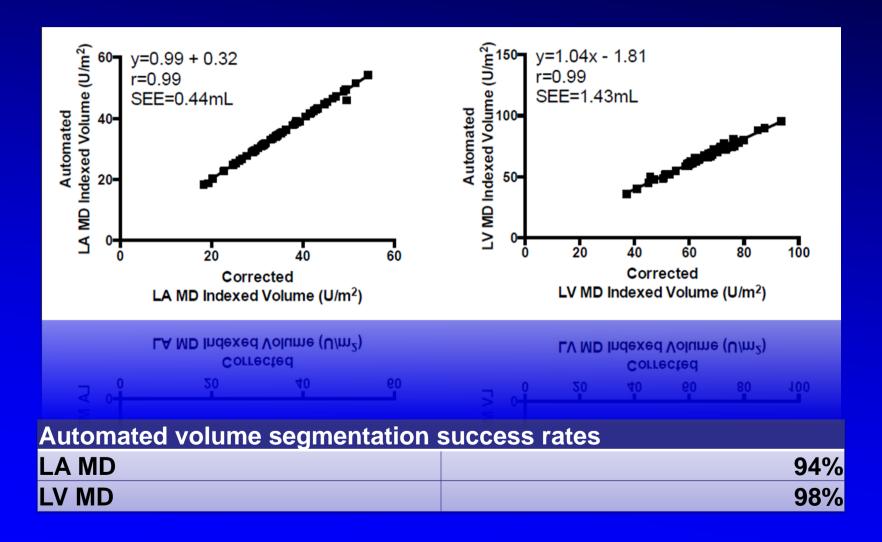

Table 2. LV/LA Enlargement			
Increased LV MDVI to detect LV Enlargement			
sensitivity	95% (20/21)		
specificity	100% (88/88)		
Increased LA MDVI to detect LA Enlargement			
Sensitivity	100% (20/20)		
Specificity	93% (14/15)		

Table 3. LV dysfunction		
Either LV MDVI or LA MDVI to detect LV dysfunction		
Sensitivity	93% (14/15)	
Specificity	80% (75/94)	

 Mid-diastolic LV/LA volumes can be used to screen for patients with abnormal Ejection Fractions.

Results Corrected vs Automated Volumes

Conclusion

Our study demonstrated for the first time that a single mid diastole phase, as obtained in prospective cardiac CT scans, can be used to identify patients with cardiomegaly or LV dysfunction with a high degree of accuracy.

Clinical Implications

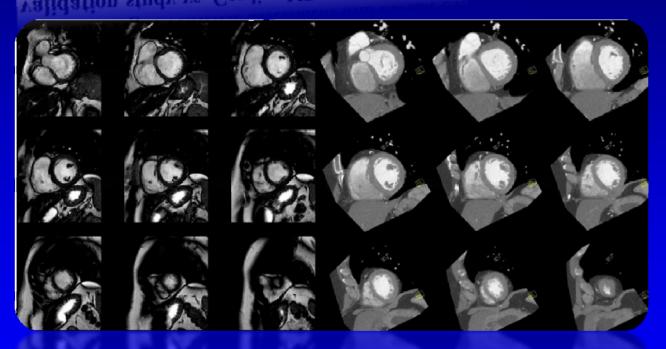
- Evaluation of mid-diastolic volumes can provide valuable clinical information.
- Since it is simple and quick to do, it should probably be performed in all patients undergoing cardiac CT.
- Results can be used to decide which patients should be referred for echocardiography.

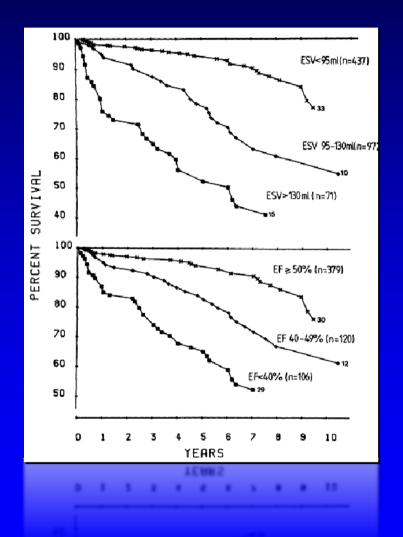
Acknowledgements

- Supervisor: Dr. Jonathan Lessick
- Members of the Cardiology Dept at Rambam Health Campus

CARDIAC

Left and right ventricle assessment with Cardiac CT: validation study vs. Cardiac MR




Fig. 1 Short Axis views of the Left and Right Ventricle by MR and CT. End-diastolic Short Axis views of the Left and Right Ventricle by MR and CT (MPR 8 mm thick reconstructions).

Maffei E, Messalli G, Martini C, et al. Left and right ventricle assessment with Cardiac CT: validation study vs. Cardiac MR. Eur Radiol. 2012 May;22(5):1041-9.

Value of LA and LV Chamber Volumes

- Abnormal volumes such as LV ESV and LV EDV as well as EF are correlated with morbidity and mortality risk
- Volumes are highly correlated with EF in both groups of patients with good and poor long-term prognosis.

White HD, Norris RM, Brown MA, et al. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circ. 1987;76:44-51.

CARDIAC

Left and right ventricle assessment with Cardiac CT: validation study vs. Cardiac MR

Table 2 Ventricular function parameters					
	MR	СТ	p-value	r-value	95% LA (mean)
Left Ventricle					
EDV (ml/m ²)	76±25	74±21	>0.05	0.59	-47.3;53.9 (3.3)
ESV (ml/m ²)	38±23	37±19	>0.05	0.76	-66.2;71.4 (2.6)
SV (ml/m ²)	38±1 1	37±13	>0.05	0.44	-57.7;65.6 (3.9)
EF (%)	52±14	52±14	>0.05	0.73	-40.9;42.0 (0.6)
ED wall mass (g/m ²)	59±18	57±18	>0.05	0.76	-37.9;46.3 (4.2)
Right Ventricle					
EDV (ml/m ²)	80±23	84±25	>0.05	0.58	-50.2;39.9 (-5.2)
ESV (ml/m ²)	43±18	46±21	>0.05	0.70	-65.7;53.3 (-6.2)
SV (ml/m ²)	37±12	38±12	>0.05	0.55	-58.3;51.8 (-3.2)
EF (%)	47±12	47±12	>0.05	0.74	-38.4;42.2 (1.9)

The Table shows global ventricular parameters (Right and Left Ventricle) calculated with MR and CT. Parameters are expressed as mean ± SD

The Table shows global ventricular parameters (Right and Left Ventrick calculated with MR and CT. Parameters are expressed as mean ± SD

47±12 47±12 >0.05 0.74 -38.4;42.2 (1.9)

Maffei E, Messalli G, Martini C, et al. Left and right ventricle assessment with Cardiac CT: validation study vs. Cardiac MR. Eur Radiol. 2012 May;22(5):1041-9.

