

האיגוד הקרדיולוגי בישראל האיגוד הישראלי לכירורגית לב וחזה דוד ISRAEL HEART SOCIETY איגוד הישראלי לכירורגית לב וחזה דוד ISRAEL HEART SOCIETY

The 60th International Conference of the Israel Heart Society in association with the Israel Society of Cardiothoracic Surgery 22-23 April 2013, ICC International Convention Center, Jerusalem

CoreValve in a Degenerative Surgical Valve

Ran Kornowski, MD, FESC, FACC Chairman – Department of Cardiology Rabin Medical Center, Petach Tikva, Israel

Disclosure Statement of Financial Interest

I, Ran Kornowski, do not have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation. I serve occasionally as a certified TAVI proctor for Edwards Lifesciences and Medtronic-Corevalve.

Background

- Surgical bioprosthetic valves tend to fail over time.
- Mode of failure could be aortic stenosis, aortic regurgitation, para-valvular leak or mix failure.
- Re-do SAVR is associated with augmented risk and often occurs at advanced age.

– Jones J. M. et al.; J Thorac Cardiovasc Surg 2001;122:913-918

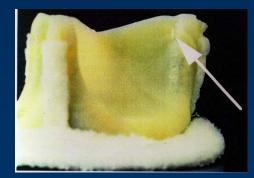
• TAVI offers a novel mode of treatment for aortic bioprosthetic valve failure instead of re-do SAVR.

Mechanism of valve failure

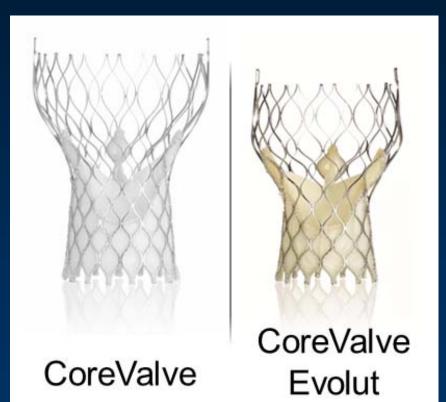
Pannus

Thrombus

Calcification



Wear& Tear (int.)


Wear& Tear (ext.)

Endocarditis

CoreValve in a Degenerative Surgical Valves CoreValve \ CoreValve Evolut[™] Design

Principle features:

- Tailored height and shape
- Conformability and sealing
- Optimized radial force
- **Coaptation** in non-circular anatomy
- Supra-annular valve position

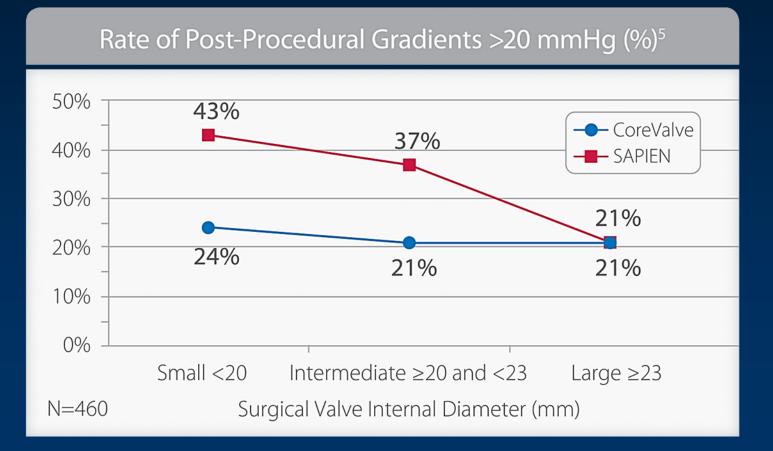
In the CoreValve Evolut[™]:

AOA[®] Anti-Mineralization Treatment:

 Reduce both early and late valvular calcification

CoreValve in a Degenerative Surgical Valve Supra-Annular Design

• The supra-annular design enables blood flow as the leaflets are positioned *above* the surgically implanted valve; reducing dependence on the inner dimension of the surgical bioprosthesis.



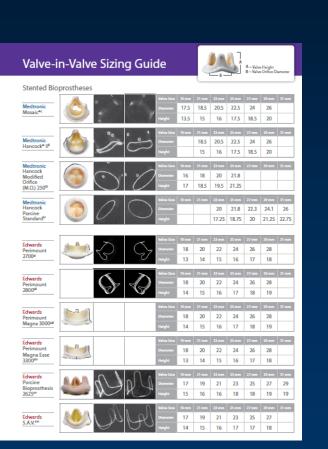
CoreValve in a Degenerative Surgical Valve

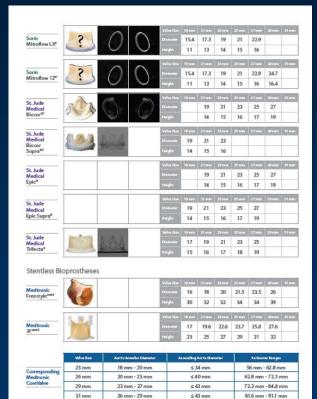
Hemodynamic Performance

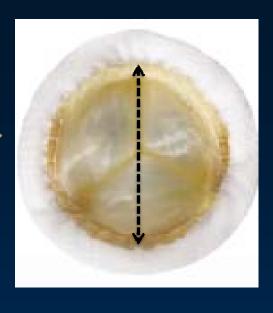
• CoreValve demonstrates lower post-procedural gradients following Valve-in-Valve procedures.

Stented versus Stentless Valves

Important Consideration


Stented SAV



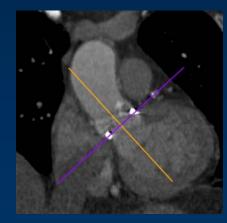

Stentless SAV

VIV Inside Diameter Importance

= valve inside diameter

It is very important to recognize the angiographic "signature" of each valve

Determine Annulus Diameter of SAV


Echo (also TEE) and Computed tomography (CT) are required.

- Inside diameter of SAV inflow (at the annulus)
- Distance between coronary ostia take off and the valve
- R/O additional cardiac pathologies (thrombus, vegetation etc.)

Echo measurement of the annulus and aortic root and assessment of additional cardiac structures.

Comprehensive CT evaluation: Access and the aortic root & bioprosthesis.

Determine Valve to Coronary Distance

Assess the risk for coronary obstruction

Valve in Valve – Case Examples

Patient 1 (D.I)

Age: 81 Gender: Female

First valve: 1998

Valve type: CE Primount – stented 19mm

TAVI - V in V **April 2013** CV Evolut[™] 23mm **Access: Femoral Pre: Severe AS** (67\42 mmHg) AR grade post: 0\1 **Post gradient:** (21\13 mmHg)

Patient 2 (S.A)

Age: 82 Gender: Male

First valve: 2003

Valve type: Mitroflow – stented 19mm

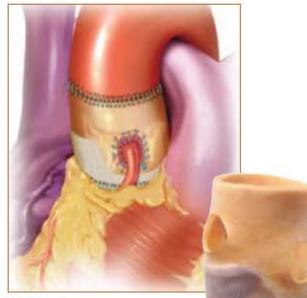
TAVI - V in V December 2012 CV Evolut[™] 23mm **Access: Femoral** Pre: AR +AS AR grade post: 0 **Post gradient:** (18\9 mmHg)

Patient 3 (S.A)

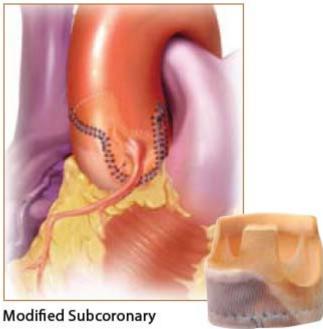
Age: 86 Gender: male

First valve: 1996

Valve type: Toronto stentless

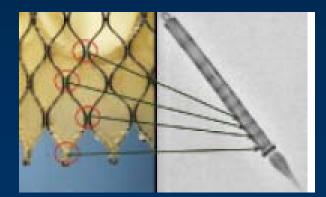


TAVI - V in V
March 2012
CoreValve, 26mm
Access: Femoral
AR grade pre: 4
AR grade post: 1


Stentless VIV Implants

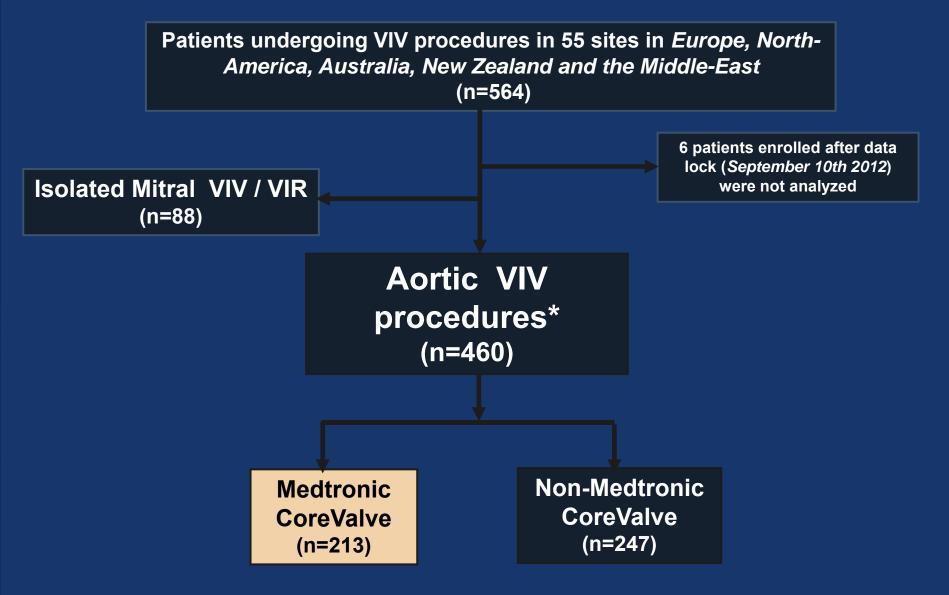
Typical Implant Techniques for Homografts and Stentless Bioprostheses

Full Root



Stentless bioprostheses and homografts lack radiopaque structures and calcification is typically less than with native valves. This challenges visualization of the level of the annulus.

Deployment Depth


 Within the aortic annulus (approximately 4 mm to 6 mm below the annulus)

Global Valve in Valve Registry

* Including 3 combined aortic VIV and mitral VIV procedures

Baseline Demographics at Time of VIV

	CoreValve n=213
Age (yrs)	77.6 ± 10.0
Gender (% male)	53.1%
LogEuroSCORE	31.1 ± 16.8
STS score (%)	12.8 ± 10.6
Diabetes Mellitus	31.1%
Peripheral Vascular Disease	17.9%
Chronic Renal Failure	38.0%
Previous stroke	12.2%
NYHA III/IV	93.9%

Baseline Valve Parameters

	_			C C _	
IVIA	cha	nis	mo	т та	ilure

Regurgitation	36.6%
Stenosis	35.2%
Combined	28.2%

	CoreValve n=213
Stented	71.4%
Stentless	28.6%
Label Size	
≤21 mm	36.2%
22-26 mm	54.5%
≥27 mm	5.2%
Unknown	4.2%

Bioprosthetic Valves Types

Carpentier-Edwards

Magna

Perimount

Sorin Biomedica

Pericardon

Freedom

Soprano

Medtronic

Hancock II

Mosaic

Freestyle **Stentless**

Shelhigh

NR 2000 NR 900 A Semistented Tricuspid valve

Toronto SPV **Stentless**

Freedom

St Jude Medical

Trifecta

Gamina

Ionescu Shiley

Kiros

Pericarbon

Dokimos

Imperiii stentless

Cryolife 0'Brien stentless

Aspire stented

Vascutek

Sorin-Carbomedics

Mitroflow

Valve in Valve Procedures

CoroValva

	n=213
Device size	
23mm	3 (1.4%)
26mm	173 (81.2%)
29mm	34 (16.0%)
31mm	3 (1.4%)
Access	
femoral artery	197 (92.5%)
axillary artery	12 (5.6%)
apical	0
direct-aortic	4 (1.9%)
TEE	45.1%
General anesthesia	55.4%

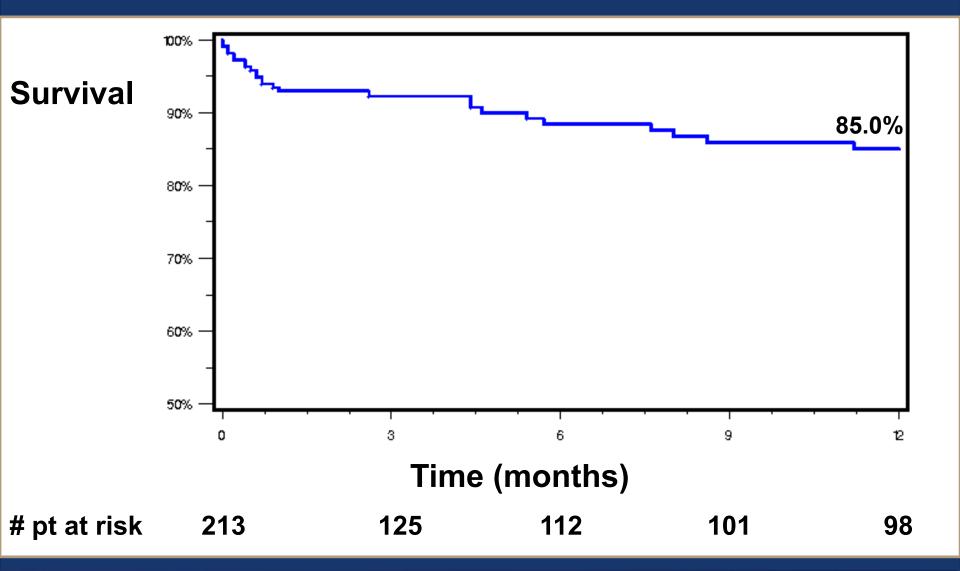
Valve in Valve Procedures

	CoreValve n=213
Pre implantation valvuloplasty	19.2%
Initial device malposition	16.0%
Attempted Valve retrieval	9.0%
2nd device implanted	4.8%
Post implantation valvuloplasty	7.5%
Need for an emergent surgery	2.5%
Clinically-evident Coronary obstruction	3.0%

Post procedure Echocardiography

	CoreValve n=213
AV area (cm²)	1.58 ± 0.41
AV max gradients (mmHg)	26.2 ± 12.1
AV mean gradients (mmHg)	14.1 ± 7.3
AR (≥2)	8.0%
LVEF (%)	51.2 ± 12.2

Aortic Valve in Valve Procedures 30-day clinical results

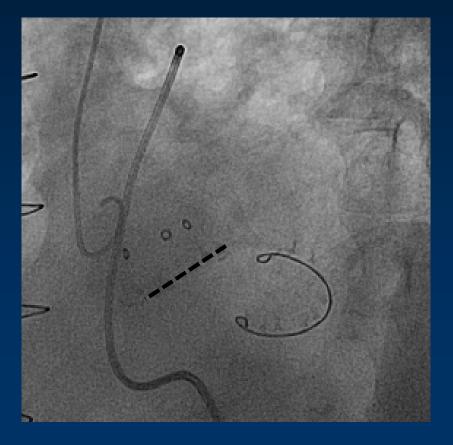

	CoreValve n=213
All cause death	7.2%
Cardiovascular death	5.8%
Major stroke	0.9%
Major vascular complication	8.5%
Major / life threatening bleeding	4.9%
Acute kidney injury (VARC>=2)	5.0%
Permanent pacemaker implantation	12.3%

Valve in Valve Procedures **30-day clinical results**

85.5% had NYHA class I /II 30 days after Corevalve VIV procedure!

	Stenosis n=168
ΝΥΗΑΙ	43.7%
ΝΥΗΑΙΙ	41.8%
NYHA III	6.6%
ΝΥΗΑΙν	0.9%
Death	7.2%

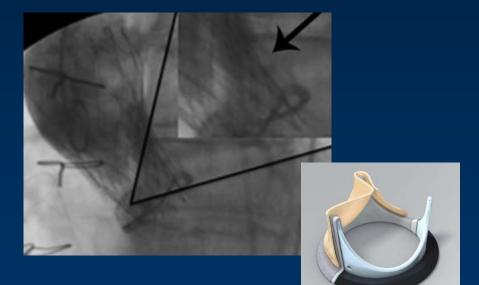
1-year Survival Curve of patients who underwent VIV procedures Using Medtronic CoreValve

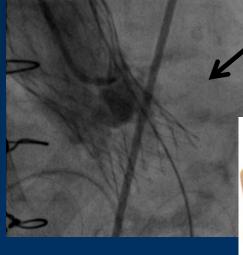

Safety & Efficacy Concern 1: Device Malpositioning

CoreValve device retrieval: 9.0% 2nd THV device implanted: 4.8%

Safety & Efficacy Concern 2: Difficult positioning

Difficult positioning in s Mosaic valve: No fluoro markers at the sewing ring

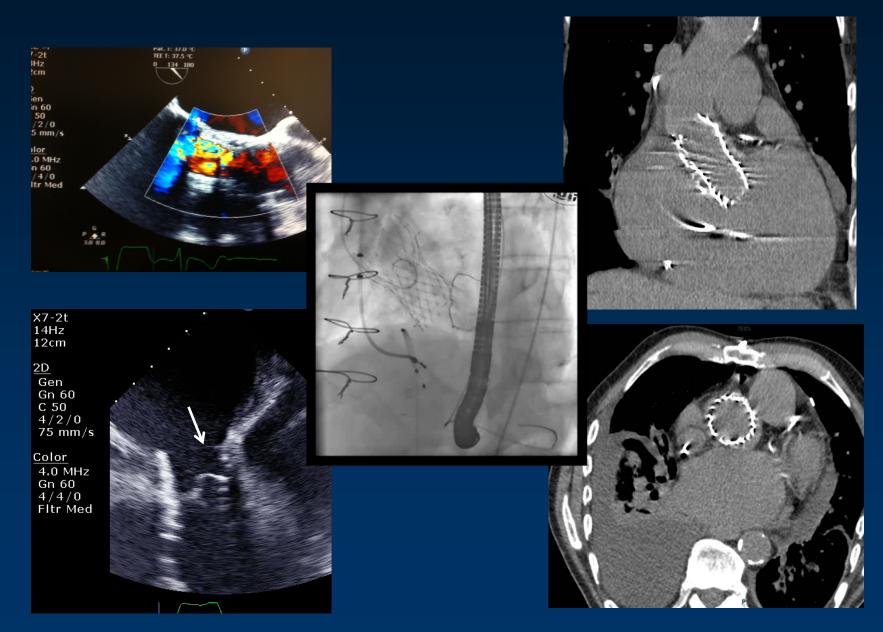

Difficult positioning in a regurgitant stentless valve: No fluoro markers, no calcification



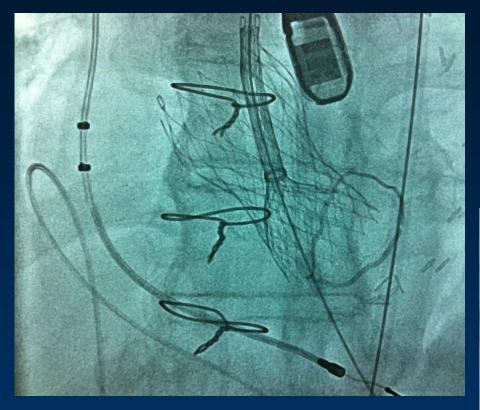
Safety & Efficacy Concern 3: Coronary Obstruction

	Stenosis	Regurgitation	Р
Coronary Obstruction*	3.9%	0.8%	0.02

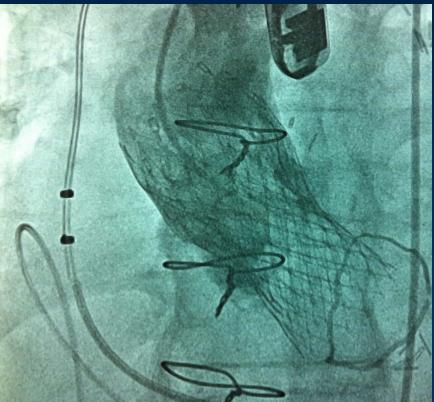
Immediate LM obstruction post VIV


Mitroflow

Sorin Freedom

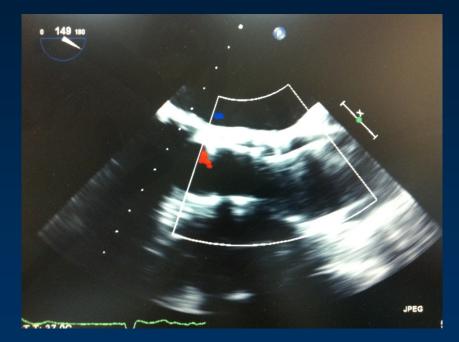

* Overall quote in the global registry included all VIV procedures (CV & ES)

Safety & Efficacy Concern 4: Durability?


Severe AR 3 yrs following TAVI within failed stentless valve and one year after suspected endocarditis

Re-do Valve in Valve TAVI 3 years post VIV procedure

CoreValve 29 mm within previously implanted CoreValve 29 mm (3 yrs ago) for VIV indication (within 25 mm Toronto SPV)



RMC VIV case #22 (4.2013)

Re-do Valve in Valve 3 years post VIV procedure

Post VIV-IV

- The VIV procedure using the Medtronic *CoreValve* device is feasible but technically challenging.
- Clinically, the technique is extremely effective in most patients, with 1-year results comparable with other TAVR cohorts.
- Residual valve gradients are low and relatively unaffected by valve sizes, probably due to supra-annular functional positioning.
- *The CoreValve Evolut* 23mm is a very useful add for VIV that should expand the treatment options for failed aortic bioprostetic valves

THANK YOU

