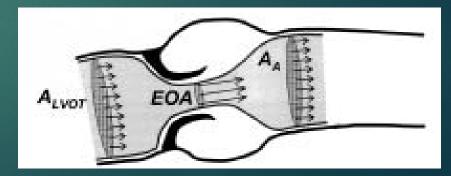
Comparison of the Hemodynamic Performance and Midterm Outcome of **Percutaneous versus Surgical** Stentless Bioprostheses for Aortic Stenosis with **Anticipated Patient Prosthesis Mismatch**

Schwartz Lorin MD¹, Finkelstein Arik MD¹, Banai Shmuel MD¹, Keren Gadi MD¹, Kramer Amir MD², Uretzky Gideon MD², Topilsky Yan, MD¹

¹Division of Cardiovascular Diseases Tel Aviv Medical Center ²Division of Cardiovascular Surgery, Tel Aviv Medical Center



introduction

Patient prosthetic mismatch (PPM)

- Effective Orifice Area (EOA) of the implanted prosthesis is too small to body size area
- ► Results in:
 - High post transplant gradient Less regression of LVH More cardiac events Higher mortality

Identification of PPM

- Indexed EOA = in vivo EOA/BSA (cm^2/m^2)
 - ▶ iOEA < 0.85 cm²/m² => moderate PPM
 - ▶ iOEA < 0.65 cm²/m² => severe PPM
- Expected PPM -
 - Step 1 <u>the minimal acceptable EOA</u> Multiply known BSA by 0.85
 Player 1: 1.5 x0.85 = 1.275
 Player 2: 2.15 x0.85 = 1.82

Patient no.	1	2	3	4	5
BSA(m2)	1.5	1.75	2	2.25	2.5
cardiac output (l/min)	4.5	5.25	6	6.75	7.5
Valve EOA (cm2)	1.3	1.3	1.3	1.3	1.3
Mean pressure gradient	13	17	22	28	35

Player 1Player 2H 1.6mH 2.0mW 50 kgW 80 kgBSA 1.5 m²BSA 2.15 m²

Expected PPM -

Step 2 –

Compare mEOA to normal table references based on LVOT measurement (projected EOA)

Expected PPM =>

Minimal EOA > Projected EOA

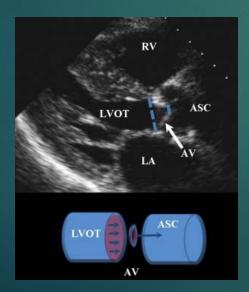
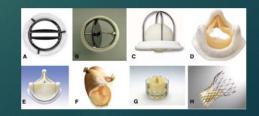



Table 1. Normal Reference Values of EOAs for the Aortic Prostheses

	Prosthetic Valve Size, mm						
	19	21	23	25	27	29	Reference
Aortic stented bioprosthesis							
Mosaic	1.1 ± 0.2	1.2 ± 0.3	1.4 ± 0.3	1.7 ± 0.4	1.8 ± 0.4	2.0 ± 0.4	10
Hancock II		1.2±0.1	1.3 ± 0.2	1.5 ± 0.2	1.6 ± 0.2	1.6±0.2	10
Carpentier-Edwards Perimount	1.1 ± 0.3	1.3 ± 0.4	1.50 ± 0.4	1.80 ± 0.4	2.1 ± 0.4	2.2±0.4	10
Carpentier-Edwards Magna*	1.3 ± 0.3	1.7 ± 0.3	2.1 ± 0.4	2.3 ± 0.5			11, 20
Biocor (Epic)*		1.3 ± 0.3	1.6 ± 0.3	1.8±0.4			12
Mitroflow*	1.1 ± 0.1	1.3 ± 0.1	1.5 ± 0.2	1.8±0.2			13
Aortic stentless bioprosthesis							
Medtronic Freestyle	1.2±0.2	1.4±0.2	1.5 ± 0.3	2.0 ± 0.4	2.3±0.5		10
St Jude Medical Toronto SPV		1.3 ± 0.3	1.5 ± 0.5	1.7±0.8	2.1±0.7	2.7±1.0	10
Aortic mechanical prostheses							10
Medtronic-Hall	1.2±0.2	1.3±0.2					10
Medtronic Advantage*		1.7 ± 0.2	2.2±0.3	2.8±0.6	3.3±0.7	3.9 ± 0.7	14
St Jude Medical Standard	1.0 ± 0.2	1.4±0.2	1.5 ± 0.5	2.1±0.4	2.7±0.6	3.2±0.3	10
St Jude Medical Regent	1.6±0.4	2.0 ± 0.7	2.2±0.9	2.5±0.9	3.6±1.3	4.4±0.6	27
MCRI On-X	1.5±0.2	1.7 ± 0.4	2.0±0.6	2.4±0.8	3.2±0.6	3.2±0.6	27
Carbomedics Standard	1.0±0.4	1.5 ± 0.3	1.7±0.3	2.0 ± 0.4	2.5 ± 0.4	2.6±0.4	10

EOA is expressed as mean values available in the literature.

*These results are based on a limited number of patients and thus should be interpreted with caution.

Avoidance of PPM

Alternate complex procedures

Aortic root enlargement

Prosthetic model with superior hemodynamic performance
Stentless vs. stented AVR

► TAVI

Introduction – aim of study

Examine and compare

- ► Hemodynamics
- Early and mid term outcomes

In patients with expected PPM that were treated by stentless AVR or TAVI

Methods

► Inclusion:

► At least expected moderate PPM

► Exclusion:

► Bicuspid valve

Methods

- Retrospective
- Tel Aviv medical center
- January 2009 December 2011
 - 200 TAVI 86 with at least expected moderate PPM
 - 49 stentless freestyle medtronics patient similar in charchteristics to the TAVI cohort
- Echocardiography baseline, pre-discharge and 3 months postimplantaion.
- Operative risk assessment EuroScore and Charlson Score.

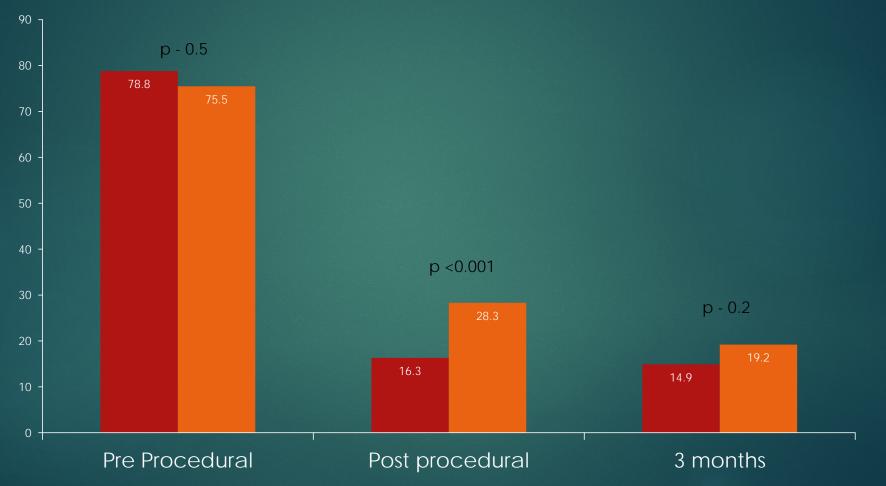
Variables	TAVI(total 86)	AVR(total 49)	P value				
BSA	1.81±0.18	1.86±0.20	0.2				
Age	82.4±5.05	73.0±7.77	<0.001				
Gender (male)	28(32%)	16(32%)	0.9				
Echocardiographic parameters							
EF%	56.8±6.5	55.0±7.9	0.2				
LVOT	1.95±0.11	1.94±0.13	0.7				
Peak pressure trans-aortic gradient	78.8±21.3	75.5±31.6	0.5				
Mean pressure trans-aortic gradient	47.9±13.7	43.1±19.2	0.2				
ÁVA (cm²)	0.64±0.15	0.71±0.17	0.2				
Aortic Regurgutation							
· 0	34(39%)	22(45%)					
· Mild	49(57%)	22(45%)	0.05				
· Moderate	3(4%)	3(6%)					
· Severe	0 (0%)	2(4%)					
			0.01				
NYHA class	III (75%); IV (25%)	II (8%) III (65%): IV (27%)					
Atrial fibrillation	15(17%)	8(16%)	0.9				
Prior CABG	14(16%)	3(6%)	0.09				
Logistic EuroScore II	6.831	4.54	0.004				
Charlson's score	6.4±1.4	5.5±1.4	0.001				

TAVI vs. SAVR

TAVI cohort compared to SAVR

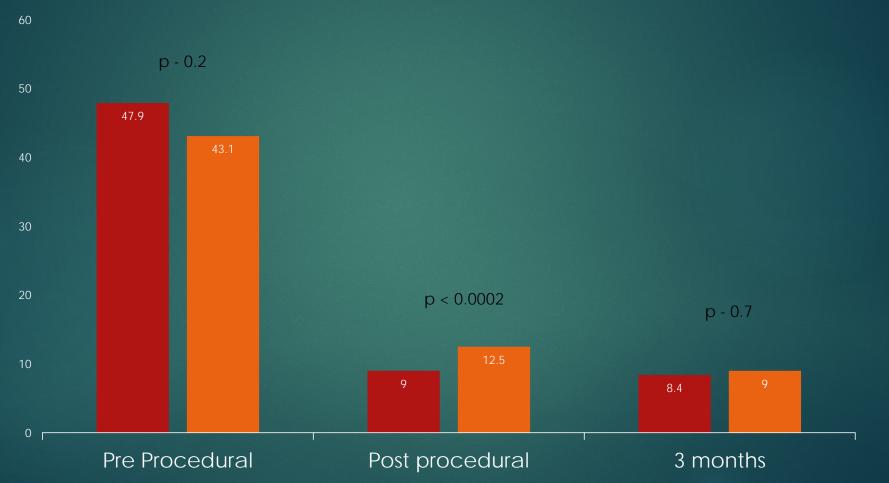
- Older patients
- more symptomatic
- smaller end diastolic, end systolic diameters and LV mass
- higher logistic Euro-score II and Charlson co-morbidity scores

As expected TAVI patients were older and sicker.

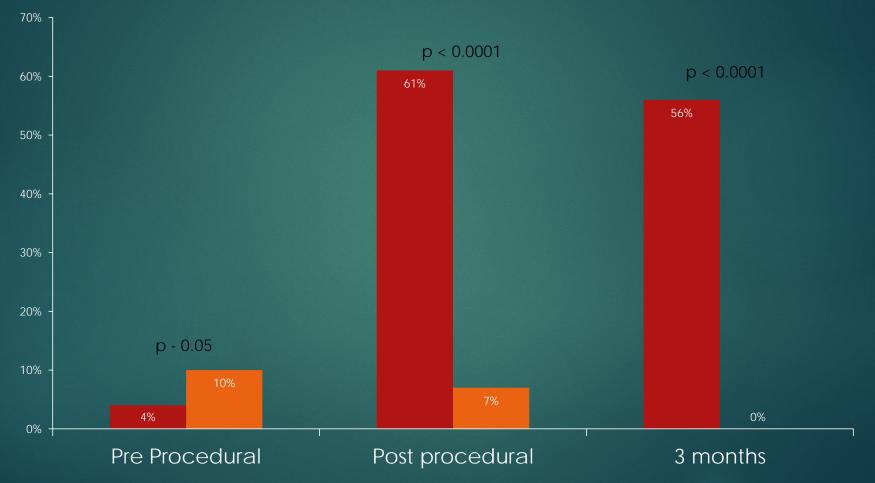

Operative Outcomes and Operative Mortality

► TAVI

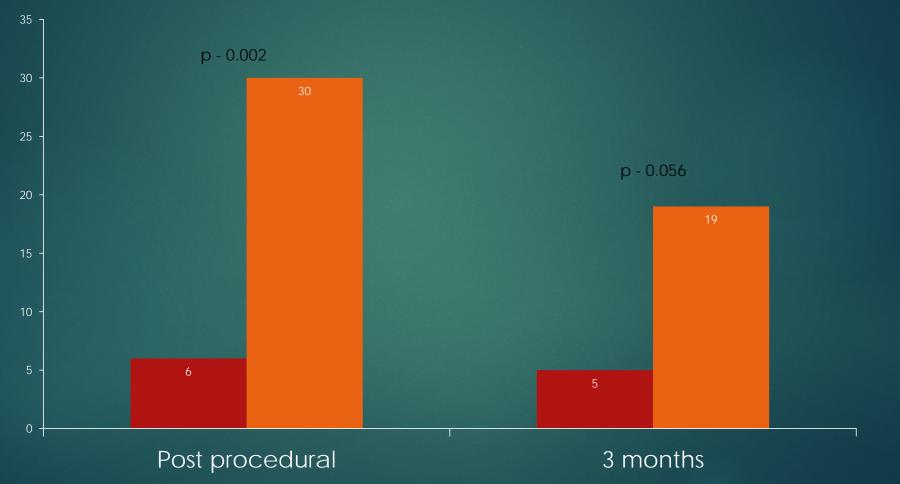
- ► CoreValve
- ▶ 47 patients (55%) had concomitant PCI
- ► SAVR
 - ▶ 3 patients (6%) intervention on thoracic Aorta
 - ▶ 23 patients (47%) had concomitant CABG
- Both groups had the same length of stay in hospital average of 7 days


Peak Pressure Gradient

TAVI SAVR

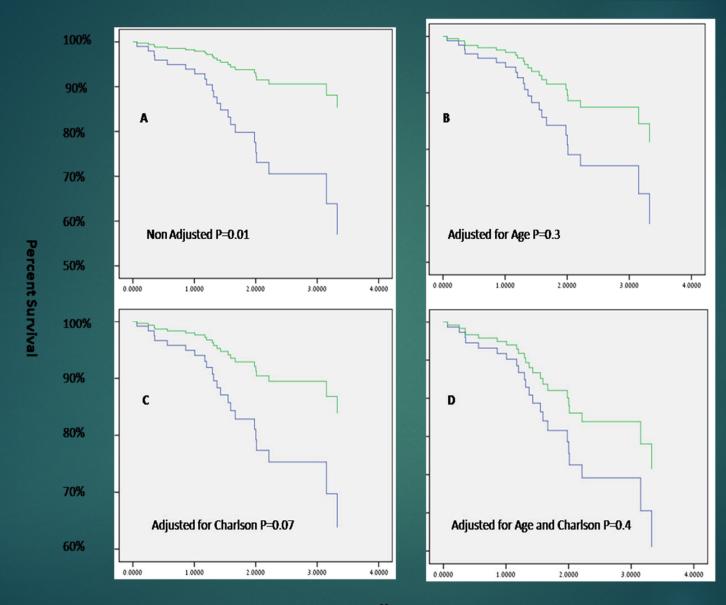

Mean Pressure Gradient

TAVI SAVR


Aortic Regurgitation

TAVI SAVR

Post – Procedural Patient Prosthesis Mismatch


TAVI SAVR

Mortality

Unadjusted 3-year survival rate was superior in the SAVR vs. TAVI group - 91.6±4.0% Vs. 67.0±7.7% p=0.01

Adjustments for age and co-morbidity resulted in loss of the difference in mortality between the groups

Years

Mortality

► Higher mortality rates associated with:

- ► Older age
- ► NYHA>III
- Small stroke volume and atrial fibrillation
- High comorbidity index

Discussion

Immediate hemodynamic performance of TAVI is superior to the stentless valve probably due to use of an oversized valve, leading to some distension of the aortic annulus

Performing SAVR or TAVI are reasonable choices for patients with anticipated PPM

The increased un-adjusted mortality observed in TAVI is due to the differences in age and co-morbidities

After adjustment for the differences in age and co-morbidities between the groups the survival was similar

Take home message

Although TAVI should not be used as the procedure of choice in all patients with anticipated PPM, it may be considered as a possible and comparable solution in older and sicker patients with small outflow tract for body surface area.

The higher prevalence of aortic regurgitation in TAVI may offset the beneficial effect on survival of less PPM in favor of SAVR.

Thank you