

Background

- Primary angioplasty is the treatment of choice in patients with acute myocardial infarction (MI). However, early surgical revascularization may be warranted in complex multi-vessel coronary disease.
- During the past decade, both percutaneous coronary interventions (PCI) and CABG have significantly evolved.
- Controversy exists regarding the risks and optimal timing of surgery after ACS.

Study Aims

1)To examine the referral trends to and predictors of early CABG referral, after an ACS admission

2)To determine the **outcomes** of patients operated on soon after ACS

3)To establish whether outcomes of this population have **improved** over the past decade

Baseline characteristics

	Early CABG	Non early	
		CABG	p value
	n=566	n=10919	
Demographics	(4.9%)	(95.1%)	
Age	64.6±12	63.7±13	0.7
Female gender	22%	24%	0.40
Medical History			
PRIOR MI	29%	29%	0.80
PRIOR CABG	1%	11%	< 0.001
PAST PCI	20%	26%	< 0.001
PRIOR CHF	6%	8%	0.10
Three Vessel Disease	61%	29%	0.001
ST Elevation MI	39%	48%	0.001
Anterior wall MI	38%	33%	0.01
Killip class on admission			
1-11	80%	93%	0.02
III-IV	20%	7%	0.02

In-hospital management

	Early CABG	Non early	
		CABG	p value
Primary reperfusion	16%	32%	< 0.001
Primary PCI	7%	21%	< 0.001
Thrombolysis	9%	11%	0.001
Use of IV inotropes	7%	5%	0.06
Mechanical			
Ventilation	10%	6%	0.001
Use of IABP	15%	4%	< 0.001
CICU stay (days)	6 ± 6	4.7 ± 4	< 0.001
Hospital stay (days)	12.8 ± 10	6.4 ± 6	< 0.001
Left ventricular			
function			
Persevered or Normal	34%	41%	
Mild Dysfunction	31%	30%	< 0.001
Moderate Dysfunction	25%	20%	$\begin{bmatrix} < 0.001 \end{bmatrix}$
Severe Dysfunction	11%	9%	

A decrease in early CABG referral trends

No change in 30 day CABG Referral trend

Cumulative probability of one-year mortality of the early CABG group vs. non-early CABG patients

Survival probability of patient referred to early CABG:

1ST half of the decade vs. the 2nd half

(years 2000-2005 VS. 2006-2010)

Survival of patients in the non-early CABG group during the 1ST half of the decade vs. the 2nd half

(years 2000-2005 VS. 2006-2010)

Predictors for referral to early CABG

entire patient population – logistic regression analysis

	OR	95% CI		p value
		Lower	Upper	
Prior diagnosis				
MI	1.0	8.0	1.2	0.77
HF	0.6	0.4	0.9	0.01
Killip 2 Vs Killip 1	1.3	0.9	1.7	0.11
Killip 3 Vs Killip 1	1.7	1.2	2.4	0.001
Killip 4 Vs Killip 1	1.6	0.9	2.9	0.10
Moderate LV				
dysfunction*	1.5	1.1	1.90	0.003

Model was further adjusted for the number of diseased vessels

Predictors for 1 year mortality

entire patient population - Multivariate regression analysis

		95% CI		
	OR	Lower	Upper	P value
Early CABG	1.2	0.9	1.6	.2
Past MI	1.4	1.2	1.6	<0.001
Diabetes	1.6	1.4	1.8	<0.001
Age	1.1	1.1	1.1	<0.001
Q wave MI	1.5	1.3	1.7	<0.001
Killip class >1	4.2	3.7	4.9	<0.001
Primary PCI	0.8	0.7	0.9	0.005

Model was further adjusted for admission ECG, prior diagnosis of heart failure, gender and reperfusion therapy

Conclusions

- 566 (4.9%) of the 11,536 presented patients were referred to CABG during their stay in the ICU.
- Over the past decade, the use of PCI has significantly increased, while an opposite trend was observed for early CABG procedures.
- Patients who underwent early CABG displayed higher risk factors compared with patients who were referred for PCI, including a higher admission Killip class, anterior location of MI, moderate or severe left ventricular dysfunction, and use of mechanical ventilation (p<0.05 for all).

Conclusions

- Patients who underwent PCI during between 2006-2010 had an improved survival compared to previous years (8.5% vs. 11.9%; p<0.001)
- Mortality of patients undergoing early CABG did not significantly change between the two periods (14.3% vs. 10.1%; p=0.15).
- Over the past decade, there has been a decline in referral to early CABG in ACS, which did not correlate with a significant improvement in survival rates, possibly due to the high riskclinical characteristics of ACS patients who are currently referred to early CABG.

