

Exercise Capacity in Children and Young Adults after Repair of Congenital Heart Disease

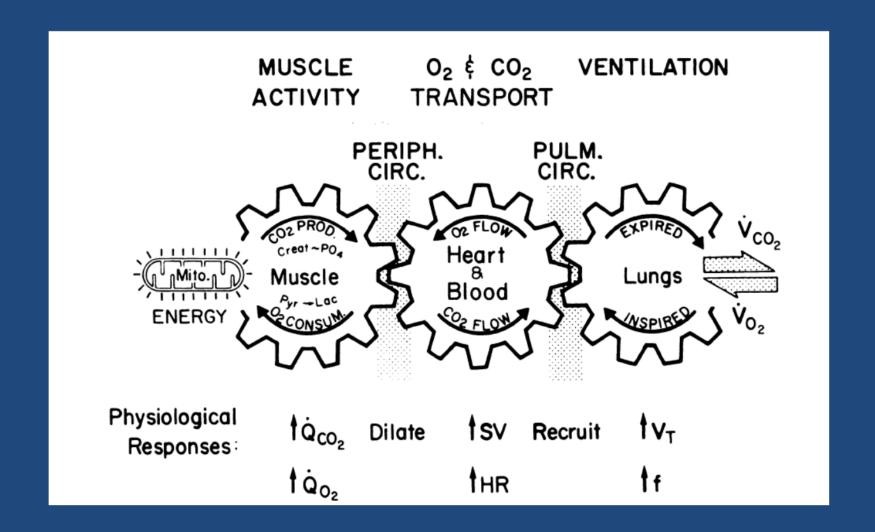
Uriel Katz, Ronen Reuveny, Omer Rosenblum, Avshalom Koren, Gal Dubnov-Raz

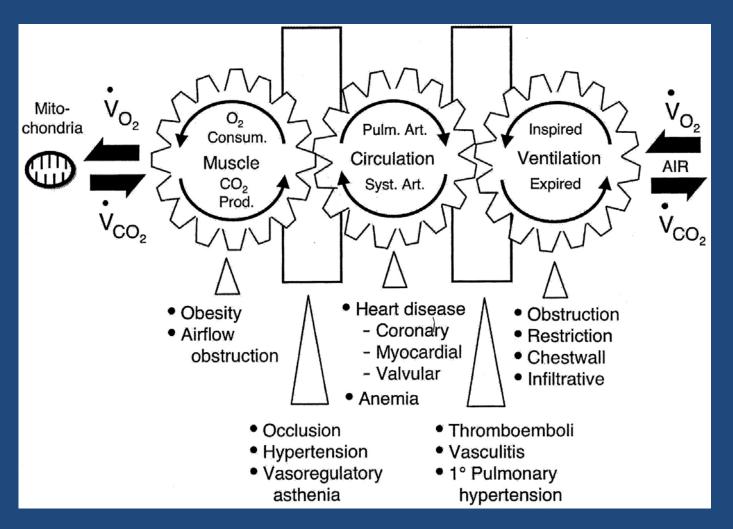
Pediatric Cardiology Clinic
The Edmond Safra International Congenital Heart Center
Edmond and Lily Safra Children's Hospital
Chaim Sheba Medical Center

I have no disclosure

Introduction

- CHD patients are usually followed-up using resting echocardiography/MRI, and no functional tests are performed
- Cardiopulmonary exercise testing (CPET) enables evaluation of maximal cardiac capacity, providing important information on functional outcome.

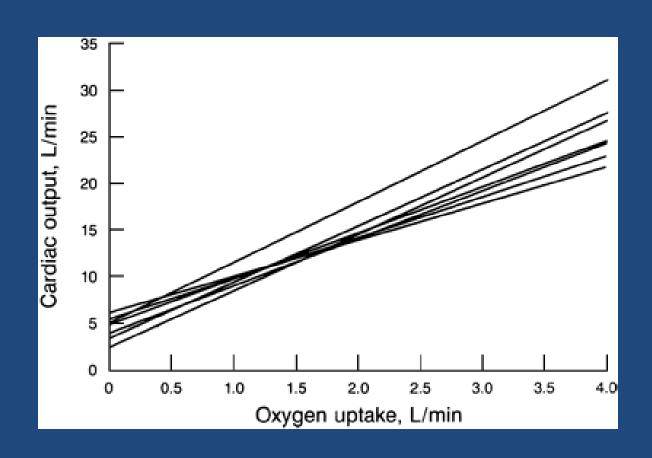

Introduction



Introduction- Gas exchange

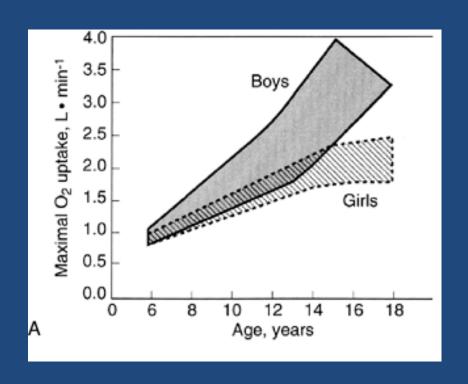
Derangements of gas exchange in disease

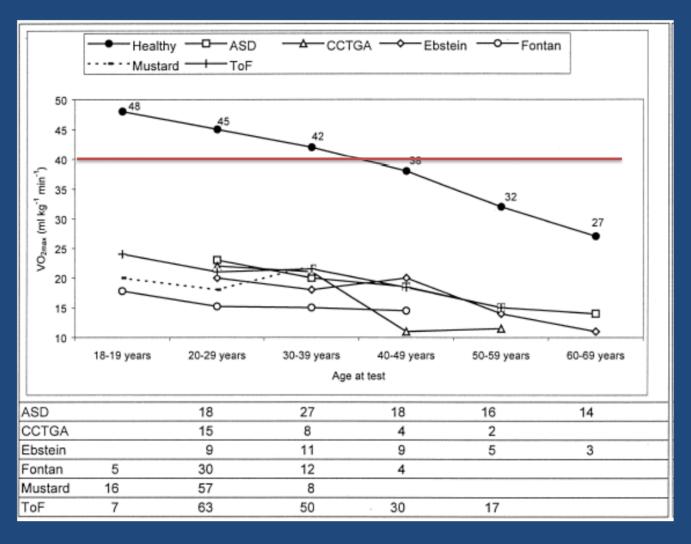
Milani, R. V. et al. Circulation 2004;110:e27-e31



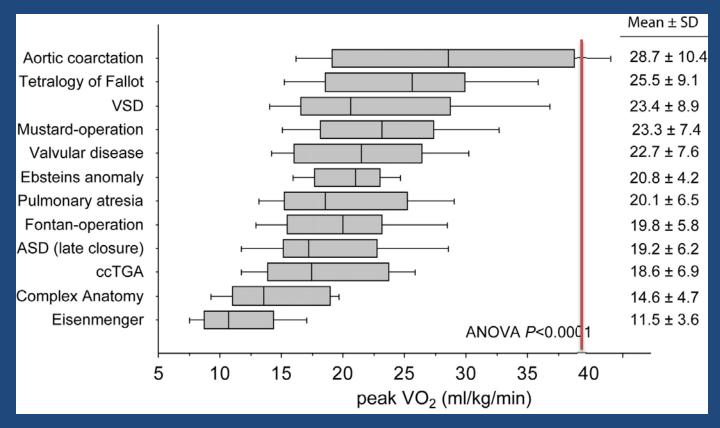
VO₂

- Oxygen uptake
 - determined by cellular demand
 - level of maximal O₂ transport
- Normal VO₂
 - Age
 - Sex
 - Body size
 - Training
 - Motivation


Cardiac Output vs. O₂ uptake

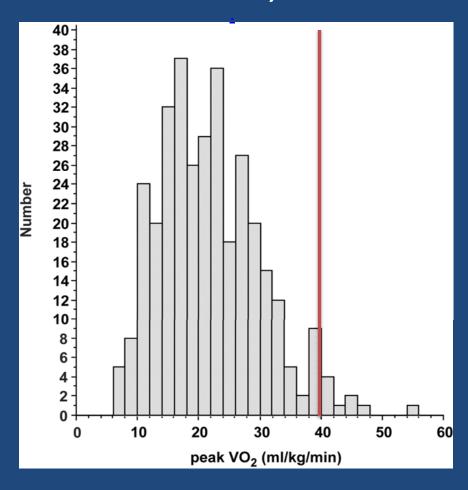

VO₂max –normalized to age and gender

Boys 42 ml/kg/min


Girls 38 ml/kg/min

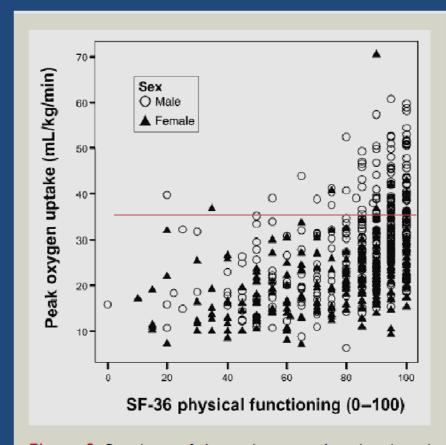
Aerobic Capacity in Adults With Various Congenital Heart Diseases

Distribution of peak VO2 in different diagnostic groups



Diller, G.-P. et al. Circulation 2005;112:828-835

Distribution of peak VO₂ in <u>asymptomatic</u> patients with ACHD (NYHA class I)

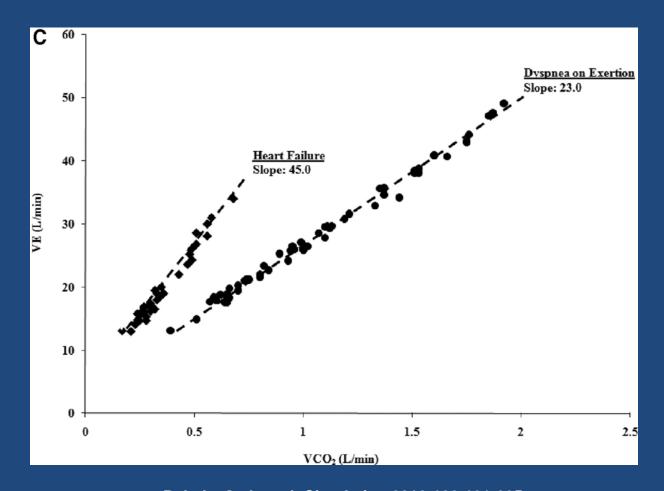


Exercise intolerance in ACHD: comparative severity, correlates, and prognostic implication Diller, G.-P. et al. Circulation 2005;112:828-835

Self estimated functioning vs. VO₂peak

Figure 3 Correlation of objectively measured aerobic physical capacity and self-estimated physical functioning in 564 adolescents and adults with congenital heart disease (r = 0.435, $P = 1.72 \times 10^{-27}$); additionally depicting that many patients overestimate their physical capabilities.

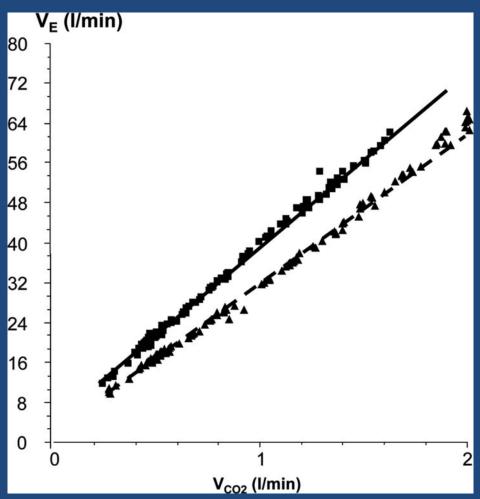
European Heart Journal (2009) **30**, 497–504
Self-estimated physical functioning in CHD patients


V_E/V_{CO2} slope

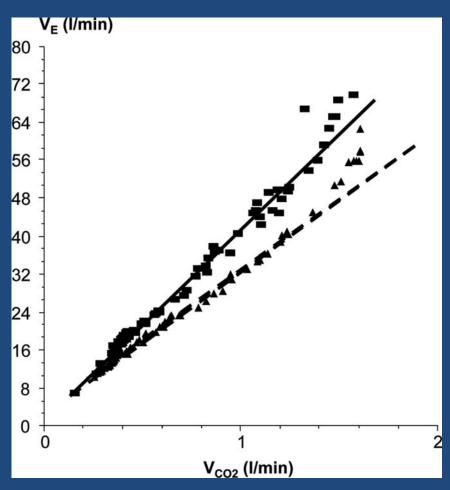
Minute ventilation /CO₂ production

- Index of gas exchange efficiency during exercise
 - Liters of air exhaled /1 Liter of CO2 eliminated

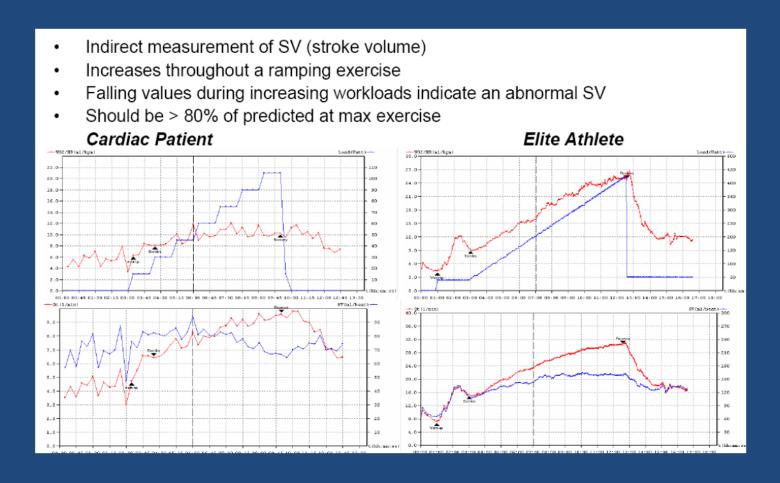
• In children < 28


V_E/V_{CO2} in HF vs. respiratory dyspnea

Balady, G. J. et al. Circulation 2010;122:191-225
Clinician's Guide to cardiopulmonary exercise testing in adults: a scientific statement
American Heart Association
Association

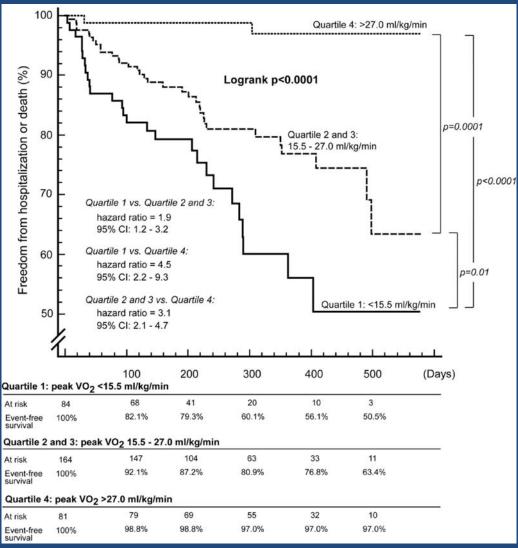


V_E /V_{CO2} in a TOF patient before and after successful LPA balloon angioplasty


V_E/V_{CO2} in a patient with fenestrated Fontan before and after fenestration closure

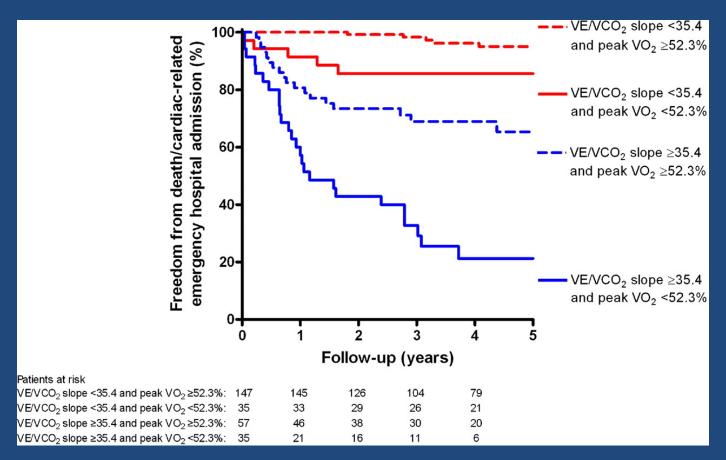
$VO_2/HR = Oxygen pulse (O_2P)$

ESC Guidelines for the management of grown-up congenital heart disease (new version 2010)


The Task Force on the Management of Grown-up Congenital Heart Disease of the European Society of Cardiology (ESC)

Endorsed by the Association for European Paediatric Cardiology (AEPC)

3.2.4 Cardiopulmonary exercise testing


Formal exercise testing has an important role in the GUCH population, in which quality of life and functional capacity are key measures of the success of intervention. Traditional exercise testing uses protocols that are largely designed for risk stratification of ischaemic heart disease and are often not appropriate in GUCH patients. CPET, including assessment of objective exercise capacity (time, maximum oxygen uptake), ventilation efficiency (VE/VCO₂ slope), chronotropic and blood pressure response, as well as exercise-induced arrhythmia, gives a broader evaluation of function and fitness, and has endpoints which correlate well with morbidity and mortality in GUCH patients.4 Serial exercise testing should therefore be a part of long-term follow-up protocols and interventional trials. It plays an important role in the timing of interventions and re-interventions.

Combined end point of hospitalization or death (event-free survival)

Diller, G.-P. et al. Circulation 2005;112:828-835 CAMPAGICAN HEART ASSOCIATION

Freedom From Death/Emergency Cardiac-Related Hospital Admission Stratified by Combination of VE/VCO₂ Slope and Peak VO₂

Giardini, A. et al. J Am Coll Cardiol 2009;53:1548-1555

Ventilatory efficiency and aerobic capacity predict event-free survival in adults with atrial repair for TGA

Clinical Practice and Education Paper

Physical performance and physical activity in grown-up congenital heart disease

Tony Reybrouck^{a,c} and Luc Mertens^b

Departments of ^aCardiovascular Rehabilitation, ^bPediatric Cardiology, University Hospital Gasthuisberg, Leuven, Belgium and ^cDepartment of Rehabilitation Sciences, University of Leuven (KU Leuven), 3000 Leuven, Belgium.

European Journal of Cardiovascular Prevention and Rehabilitation 2005, 12:498-502

Evaluation of children with congenital heart defects

To get an objective assessment of the functional capacity of children and adolescents with congenital heart defects, formal exercise testing should be performed with continuous measurement of gas exchange. Other methods such as history taking and questionnaires are inaccurate and not sensitive.

Guidelines for the Outpatient Management of Complex Congenital Heart Disease

Gil Wernovsky, MD*[‡], Jonathan J. Rome, MD*[‡], Sarah Tabbutt, MD, PhD*[‡], Jack Rychik, MD*[‡], Meryl S. Cohen, MD*[‡], Stephen M. Paridon, MD*[‡], Gary Webb, MD*[‡], Kathryn M. Dodds, RN, MSN, CPNP^π, Maureen A. Gallagher, RN, MSN^π, Desiree A. Fleck, RN, MSN, CRNP^π, Thomas L. Spray, MD^{†§}, Victoria L. Vetter, MD*[‡], and Marie M. Gleason, MD*[‡]

we believe that individual assessment of the child's cardiopulmonary function during exercise combined with the routine resting cardiovascular evaluations is essential to tailor appropriate activity level recommendations for these children and adolescents.

Multidisciplinary lab

Multidisciplinary team

Pediatric Cardiologist

Sport Medicine

Physiologist

Objectives

 To determine exercise capacity and cardiac function of patients with repaired CHD compared with normal controls.

 To compare measures of fitness, cardiac and pulmonary functions between CHD patients with complete or incomplete repair, as determined by resting echocardiography.

Methods

<u>Design</u>: Retrospective analysis of prospectively-collected data

- Population:
- All CHD patients <40 yrs old, with no significant additional co-morbidities,
- After biventricular corrective interventions (surgery or catheterization),
- CHD subgroups divided by the presence of significant anatomical residua on a resting echocardiogram

Methods

- Controls
- otherwise healthy children and adolescents referred to our lab for evaluation of chest pain, palpitations, arrhythmias, conduction disorders etc, and were determined to have normal cardiac function

CPET on a cycle ergometer in our institution.

Methods- CHD subgroups

Complete repair (n=49)

- TOF 13
- TGA (all s/p ASO)- 8
- VSD/ DCRV- 8
- COA − 4
- Ross- 3
- PS-2
- AVC, MS, DORV, PAPVR, IHSS

Methods -CHD subgroups

Incomplete repair (n=24)

- TOF with residual PI -8
- PS/PPS (TOF, VSD+PS, DORV, Rastelli) -5
- TGA s/p Mustard -3
- LV dysfunction (TGA, TOF, ASO)- 4
- PS (PS, Ross)- 2
- AS -1
- AI -1

Methods

 Measures of cardiac function were compared between CHD (n=73) and control (n=76) groups using multiple linear regression techniques and ANCOVA, adjusting for age and sex.

- Similar comparisons were made between CHD patients with complete (n=49) vs. incomplete (n=24) repair
- Values also expressed as % predicted for age and sex

Methods

CPET data analyzed for this study were:

– Peak VO₂: aerobic capacity

Peak O₂pulse: relates to stroke volume at peak exercise

V_E/VCO₂ slope: gas exchange efficiency ≈ cardiac function

Results- peak VO₂ (ml/kg/min)

Age adjusted results:

p value

• Complete 32.7 +/-1.2

0.59

• Incomplete 28.8 +/-1.9

0.03

0.05

Control

36.4 +/-1.1

Results- peak VO₂ (ml/kg/min)

% of predicted value:

• Complete 73.8 +/-17.9

0.96

• Incomplete 66.3 +/-20.1

0.02

0.01

p value

• Control 92.9 +/-22.0

Results- O₂ pulse

Age adjusted results:

• Complete 9.9 +/-0.47

Incomplete

8.0 +/-0.70

• Control 11.0 +/-0.40

p value

0.059

0.28

0.00

Results- O₂ pulse

% of predicted value:

Complete 90.5 +/-2.9

Incomplete 78.4 +/-4.3

• Control 94.4 +/-2.4

p value

0.047

0.26

0.001

Results- V_E/VCO₂ slope

Age adjusted results:

. . .

27.7 +/-0.6

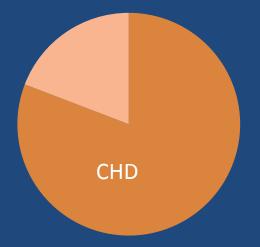
0.55

p value

• Incomplete 30.2 +/-0.9

0.04

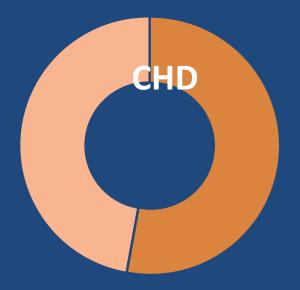
0.001

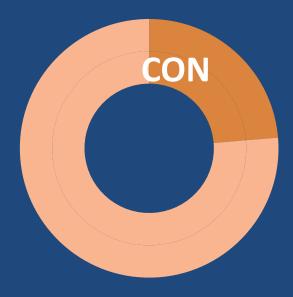

Controls

Complete

25.8 +/-0.5

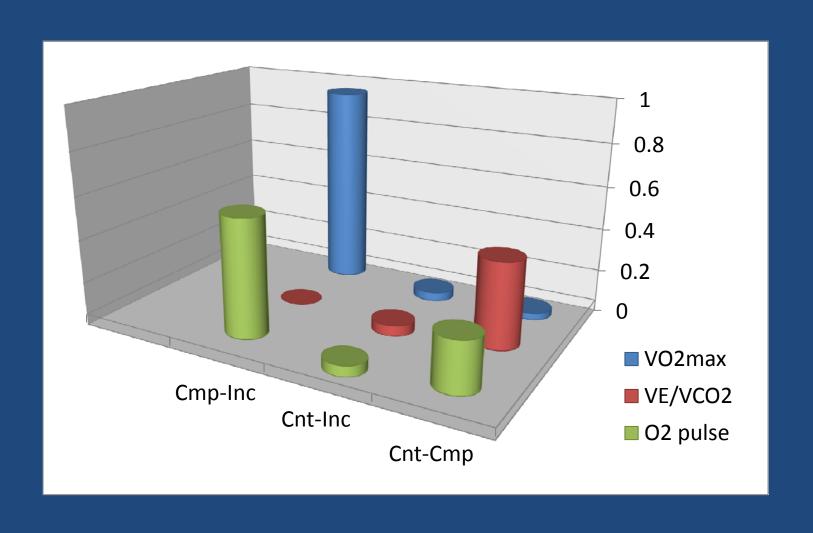
Results- Peak VO₂


- CHD patients had 25% lower <u>aerobic fitness</u> compared with controls:
 - Peak VO₂ 29±8 vs. 38±10 ml/kg/min, p=0.001
- 19% of CHD patients had normal fitness (peak VO₂ >85% predicted) vs.
- 62% of controls (p<0.001):



Results- Peak O₂pulse

- Peak O₂pulse was abnormal in
- 53% of CHD patients vs.
- 24% of controls (p<0.001)



Results- VE/VCO₂ slope

- A significantly higher VE/VCO₂ slope was seen in CHD group compared to controls 28±5 vs. 26±3 (p=0.019)
- 30% of CHD patients had an abnormal slope (>30), compared with 14% of controls (p=0.021)
- None of the measured parameters differed between CHD subgroups, except VE/VCO2 slope:
 - An abnormal slope was found in 22% with complete repair, but 46% with incomplete repair.

Study groups vs. variables

Conclusions

- Patients with biventricular CHD repair have a significantly decreased exercise capacity, due to abnormal cardiac function and deconditioning
- The measured parameters were low in all CHD patients, indicating the limited ability of resting echocardiography in assessing cardiac capacity.
- Patients with incomplete repair have a significantly higher VE/VCO₂ slope

Conclusions

- Functional cardiopulmonary capacity should be determined, in order to assign our patient a safe level of activity
- Peak VO2 and VE/VCO2 are important prognostic factors
 - CPET should be performed routinely to help plan interventions
 - Patients should learn to view physical activity as an important component of their medical care

Thank you:

- Ronen Reuveny, PhD
- Omer Rosenblum, medical student
- Avshalom Koren, PhD
- Gal Dubnov-Raz, MD

QUESTIONS?

