THE SIGNIFICANCE OF VENTRICULAR SEPTAL FLATTENING IN PATIENTS WITH SUSPECTED PULMONARY HYPERTENSION

Gingy R. Balmor, Michael J. Segel, Jonathan Buber, Sagit Ben-Zekry, Paul Fefer, Elio Di-Segni, Issahar Ben-Dov & Amit Segev

Pulmonary Institute & Cardiology
Division
Chaim Sheba Medical Center
Tel Hashomer

CONFLICT OF INTERESTS

• None to declare

BACKGROUND

Prevalence of ventricular septal flattening in pulmonary arterial hypertension (pah)

- Case series of PAH
 4/9 had ventricular septal flattening (VSF)¹
- National US registry of PAH.
 187 patients. 59% with VSF²
- Single center PAH cohort.
 51 patients 90% with VSF³
- 1. Goodman DJ et al. Am J Cardiology 1974 2. Rich S et al. Ann Intern Med 1987 3. Bossone E et al. J Am Soc Echocardiogr 1999

BACKGROUND SIGNIFICANCE OF VSF IN PAH PATIENTS

• VSF is related to hypotensive response to calcium channel blockers¹.

• The degree of septal displacement correlates with mean right atrial pressure².

• VSF predicts increased mortality ³.

¹Ricciardi MJ et al. Chest. 1999 ²Hinderliter AL et al. Circulation 1997 ³Raymond RJ et al. J Am Coll Cardiol. 2002.

AIMS

• What is the distribution of different types of pulmonary hypertension in patients with VSF?

• What is the significance of VSF in patients with suspected PH?

Hypothesis

- We assume VSF is a sign of RV pressure > LV pressure.
- We hypothesize that patients with VSF will be more likely to have pre- capillary PH and its accompanying clinical, echocardiographic and hemodynamic features.

METHODS

• Patients who were evaluated in Tel Hashomer medical center for PH and underwent right sided catheterization

- Retrospective data collection included:
 - Medical history
 - Lab results
 - Echocardiography
 - Right sided hemodynamic measurement
 - Final diagnosis confirmation Prof. Ben-Dov, Dr Segev, Dr. Segel.

RESULTS

Clinical Characteristics			
	No flattening	Flattening	p
Age (years)	64.6±15.1	58.0±17.0	0.050
Male gender	30%	24%	0.525
Overweight (BMI>30Kg/m²)	44%	24%	0.036
Ischemic heart disease	22%	15%	0.376
Hypertension	69%	54%	0.116
Diabetes	39%	33%	0.532
Dyslipidemia	59%	30%	0.002
Obstructive sleep apnea	19%	3%	0.026
Chronic lung disease	21%	39%	0.035
Past pulmonary embolism	8%	30%	0.001

Clinical Characteristics			
	No flattening	Flattening	p
Age (years)	64.6±15.1	58.0±17.0	0.050
Male gender	30%	24%	0.525
Overweight (BMI>30Kg/m ²)	44%	24%	0.036
Ischemic heart disease	22%	15%	0.376
Hypertension	69%	54%	0.116
Diabetes	39%	33%	0.532
Dyslipidemia	59 %	30%	0.002
Obstructive sleep apnea	19%	3%	0.026
Chronic lung disease	21%	39%	0.035
Past pulmonary embolism	8%	30%	0.001

Clinical Characteristics				
	No flattening	Flattening	p	
Age (years)	64.6±15.1	58.0±17.0	0.050	
Male gender	30%	24%	0.525	
Overweight (BMI>30Kg/m ²)	44%	24%	0.036	
Ischemic heart disease	22%	15%	0.376	
Hypertension	69%	54%	0.116	
Diabetes	39%	33%	0.532	
Dyslipidemia	59%	30%	0.002	
Obstructive sleep apnea	19%	3%	0.026	
Chronic lung disease	21%	39%	0.035	
Past pulmonary embolism	8%	30 %	0.001	

Echocardiography				
	No flattening	Flattening	p	
Ejection fraction (%)	58.1±8.8	58.6±6.2	0.750	
Peak E wave (cm/sec)	101.8±35.3	81.1±30.8	0.013	
Peak A wave (cm/sec)	75.7±41.6	71.0±30.8	0.603	
E/e' septal	17.1±13.5	14.5 ± 6.2	0.326	
E/e' lateral	13.0 ± 9.7	7.9 ± 3.7	0.005	
LV mass index (gr/m ²)	93.4±28.4	82.2±17.3	0.023	
LA diameter (mm)	41.0±7	36.8±10	0.028	
LA area (cm²)	22.9±6.1	20.6±6.9	0.107	
LA enlargement: area criteria	73 %	43%	0.003	
Abnormal LV filling pattern	58%	100%	0.002	

Echocardiography				
	No	Flattening	n	
	flattening	Flattening	р	
Ejection fraction (%)	58.1±8.8	58.6±6.2	0.750	
Peak E wave (cm/sec)	101.8±35.3	81.1±30.8	0.013	
Peak A wave (cm/sec)	75.7±41.6	71.0±30.8	0.603	
E/e' septal	17.1±13.5 14.5±6.2		0.326	
E/e' lateral	13.0±9.7 7.9±3.7		0.005	
LV mass index (gr/m²)	93.4±28.4	82.2±17.3	0.023	
LA diameter (mm)	41.0±7	36.8±10	0.028	
LA area (cm²)	22.9±6.1	20.6±6.9	0.107	
LA enlargement: area criteria	73%	43%	0.003	
Abnormal LV filling pattern	58% 100%		0.000	
	(31/53)	(16/16)	0.002	

Hemodynamics				
	No flattening	Flattening	p	
Mean PAP (mmHg)	36.4±14.2	51.6±17.2	0.001	
Mean PAP >25mmHg	73%	97%	0.004	
PCWP>15mmHg	61%	37%	0.019	
Trans pulmonary gradient>12mmHg	58%	97%	0.001	
Cardiac index (Fick, L/min/m²)	2.5±0.9	2.0±0.6	0.001	
Stroke volume (Fick, ml)	60.7±21.9	41.9±14.1	0.001	
Pulmonary vascular resistance (Wood's units)	4.4±3.7	11.0±6.6	0.001	
Pulmonary vascular resistance>3 wood's units	52%	97%	0.001	
Mean RA pressure (mmHg)	11.2±7.5	10.5±6.3	0.611	

Hemodynamics				
	No flattening		p	
Mean PAP (mmHg)	36.4±14.2	51.6±17.2	0.001	
Mean PAP >25mmHg	73%	97%	0.004	
PCWP>15mmHg	61%	37%	0.019	
Trans pulmonary gradient>12mmHg	58%	97%	0.001	
Cardiac index (Fick, L/min/m²)	2.5±0.9	2.0 ± 0.6	0.001	
Stroke volume (Fick, ml)	60.7±21.9	41.9±14.1	0.001	
Pulmonary vascular resistance (Wood's units)	4.4±3.7	11.0±6.6	0.001	
Pulmonary vascular resistance>3 wood's units	52%	97%	0.001	
Mean RA pressure (mmHg)	11.2 ± 7.5	10.5 ± 6.3	0.611	

Hemodynamics: Pre-Capillary PH Subgroup

	No flattening	Flattening	p
Mean PAP (mmHg)	40±13.6	55±20.3	0.012
PCWP (mmHg)	11.1±4.0	9.2±3.4	0.098
Trans-pulmonary gradient>12mmHg	92%	100%	0.198
Cardiac index (Fick, L/min/m²)	2.6±0.7	2.0±0.7	0.027
Stroke volume (Fick, ml)	55.7±18.9	40.5±14.0	0.009
Pulmonary vascular resistance (Wood's units)	7.0±4.9	13.7±7.0	0.002
Pulmonary vascular resistance>3 Wood's units	79%	100%	0.039
Mean RA pressure (mmHg)	8.2±6.6	8.5±3.7	0.836

Final Diagnosis					
	No flattening		Flatteni	Flattening	
	%	N	%	n	
No PH	16%	19	3%	1	
No PH but CHF	3%	4	3%	1	
Class I – PAH	14%	16	39%	13	
Class II – left heart disease	47%	55	18%	6	
Class III – lung disease	1%	1	0%	0	
Class IV –thromboembolic	4%	5	21%	7	
Class V - miscellaneous	3%	3	0%	0	
Out of proportion PH	10%	12	12%	4	
Sum of I, III, IV, V, Out of	200/	9.7	790/	0.4	0.001
proportion*	32%	37	73%	24	0.001
Unknown/other	2%	2	6%	2	

^{*}sum of patients diagnosed as PH with pre- capillary component

LIMITATIONS

- Broad definition of VSF possibly including several entities.
- Selected population
- Retrospective analysis
- Time lag from echocardiography to catheterization
- Different echocardiography protocols and documentation
- Change in PH definition and classification over the years

CONCLUSIONS

- VSF can indentify patients with non cardiac PH.
- VSF is a specific (97%) marker of PH with elevated pulmonary vascular resistance (but sensitivity 35%).
- In pre- capillary PH patients, VSF is associated with a more severe hemodynamic profile.
- In the presence of VSF an abnormal LV filling pattern should not be interpreted as a marker of LV disease.

CONCLUSIONS

All patients with unexplained VSF should be referred to specialized PH clinics and right heart catheterization should be considered.

Thank you!