Incidence of Acute Kidney Injury in the Patients Undergoing Surgical TAVI

A.Kogan, MD¹, <u>E.Nachum</u>, MD¹, A. Segev, MD², B. Orlov, MD¹, A. Shinfeld, MD¹, L. Sternik, MD¹, V. Guetta, MD², A. Malachy, MA¹ and E. Raanani, MD¹

¹Cardiothoracic Surgery, Sheba Medical Center, Tel Hashomer, Israel ²Cardiology Department, Sheba Medical Center, Tel Hashomer, Israel

The Leviev Heart Center

Disclosure of potential conflict of interest

The authors indicated no potential conflict of interest.

Background

- Acute kidney injury (AKI) is a complication of angiography
- It accounts for a prolonged hospital stay and worse in-hospital outcome
 - P. A. McCullough, "Contrast-Induced Acute Kidney Injury," Journal of the American College of Cardiology, vol. 51, no. 15, pp. 1419–1428, 2008
- AKI has been shown to be an independent predictor of mortality
 - B. H"olscher, C. Heitmeyer, M. Fobker, G. Breithardt, R. M. Schaefer, and H. Reinecke, "Predictors for contrast mediainduced nephropathy and long-term survival: prospectively assessed data from the randomized controlled Dialysis-Versus- Diuresis (DVD) trial," *Canadian Journal of Cardiology*, vol. 24, no. 11, pp. 845–850, 2008.
- TAVI requires the administration of contrast media, and in TAVI population, preexisting kidney disease is frequent
- The incidence of AKI, predictors of this complication, and its impact on outcome have so far been poorly defined

Objectives

To evaluate the incidence, predictive factors and prognosis of AKI following

<u>Surgical TAVI</u>

Surgical TAVI Patients

• Since June 2010, 52 pts. underwent surgical TAVI:

- Trans Apical : 42 (81%)

- Trans Axillary : 6 (11%)

− Trans Aortic : 4 (8%)

	Total
	n =52
Gender(Male), n (%)	20(40%)
Age, mean ±s.d., years	<mark>81</mark> ±8
Hypertension, n (%)	46(88%)
Hypercholesterolemia, n (%)	45(87%)
Diabetes, n (%)	<mark>24</mark> (46%)
Peripheral occlusive disease, n (%)	17(33%)
Coronary heart disease, n (%)	28(54%)
Previous myocardial infarction, n (%)	12(23%)
Previous CABG, n (%)	10(19%)
Previous stroke, n (%)	10(19%)
Baseline creatinine, mean \pm s.d., μ mol/L	1.3±0.5
GFR, mean \pm s.d., mL/min/1,73m2	52±18
Baseline Hemoglobin, mean \pm s.d., mmol/L	12.4±1.5
EUROScore STANDART, mean ±s.d.	10±3
EUROScore LOGISTIC, mean ±s.d.	<mark>21</mark> ±16

Early Results

- 30 Day Mortality: 4/52 (8%)
- Technical Success: 51 (98%)
 - Conversion to Open Surgery : 1 (2%)
- Major complications :
 - CVA : 2(4%)
 - Sepsis: 7(14%)
 - Pacemaker: 4(8%)
 - Re-Open : 7 (14%)
- Length Of Stay : 13 ±10 days

Patients & Methods

- Retrospective study, 49 pts.
- None suffered from end stage renal disease
- Renal function at baseline and after 72 hours was determined from serum creatinine
- Definition of Acute Kidney Injury :
 - According to Valve Academic Research Consortium (VARC) -modified RIFLE classification
 - Defined as stage 2 or 3 :
 - Increase in serum creatinine to 200%-300% of baseline or
 - Increase of serum creatinine of 26.4-354 mmol/L (0.3-4.0 mg/dL)

Results

Baseline data and periprocedural characteristics with respect to different access modes for valve replacemen					
	Without	With	Total	P value	
	AKI	AKI			
Gender (Male), n (%)	n =25 6(24%)	n =24 13(54%)	n =49 19(39%)	0.042	
Age, mean ±s.d., years	80±8	81±9	81±8	0.496	
Hypertension, n (%)	20(80%)	23(96%)	43(88%)	0.189	
Hypercholesterolemia, n (%)	21(84%)	22(92%)	43(88%)	0.667	
Diabetes, n (%)	11(44%)	12(50%)	23(47%)	0.778	
Peripheral occlusive disease, n (%)	4(16%)	12(50%)	16(33%)	0.016	
Coronary heart disease, n (%)	13(52%)	13(54%)	26(53%)	1.000	
Previous myocardial infarction, n (%)	5(20%)	6(25%)	11(22%)	0.742	
Previous CABG, n (%)	5(20%)	3(12%)	8(16%)	0.702	
Previous stroke, n (%)	4(16%)	6(25%)	10(20%)	0.496	
Pc mean ± s.d	1.2±2.4	2.2±3.1	1.7±2.8	0.210	
Baseline creatinine, mean \pm s.d., μ mol/L	1.2±0.4	1.3±0.5	1.3±0.5	0.420	
GFR, mean \pm s.d., mL/min/1,73m2	53±18	53±19	52±18	0.935	
Baseline hemoglobin, mean \pm s.d., mmol/L	12.2±1.2	12.6±1.8	12.4±1.5	0.432	
Hemoglobin Max after intervention, mean±s.d., mmol/L	9.3±1.1	8.7±1.2	9.0±1.2	0.069	
EUROScore STANDART, mean ±s.d.	9±3	11±2	10±3	0.035	
EUROScore LOGISTIC, mean ±s.d.	16±10	24±16	21±16	0.058	
Weight (kg) ±s.d.	65±15	72±13	68±14	0.115	
Height (cm) ±s.d.	160±8	162±9	161±9	0.422	

All values are expressed as mean \pm s.d. or n (%).

Results (cont)

Multivariate predictors of acute kidney injury.						
	OR	CI 95%	P value			
Gender (Male)	2.930	0.675-12.723	0.15			
Peripheral occlusive disease	3.522	0.766-16.190	0.11			
EUROScore STANDART	1.357	0.991-1.857	0.05			

Early Results					
	Without	With AKI	P Value		
	AKI	n = 24			
	n =25				
Mortality	0(0%)	4(17%)	0.050		
CVA	0(0%)	2(8%)	0.235		
SEPSIS	0(0%)	7(29%)	0.004		
Pacemaker	2(8%)	2(8%)	1.000		
ReOpen	3(12%)	4(17%)	0.702		
Length Of Stay	9±5	17±13	0.011		
All values are expressed as mean \pm s.d. or n (%).					

Renal Guard

Closed loop system

- Create & maintain high urine output "at risk" period for CIN:
 - Prevent contrast agents from clogging tubules
 - Limit toxin exposure in kidneys

 Minimizing the risk of over/underhydration

B. H"olscher, C. Heitmeyer, M. Fobker, G. Breithardt, R. M. Schaefer, and H. Reinecke, "Predictors for contrast mediainduced nephropathy and long-term survival: prospectively assessed data from the randomized controlled Dialysis-Versus- Diuresis (DVD) trial," *Canadian Journal of Cardiology*, vol. 24, no. 11, pp. 845–850, 2008.

Conclusions

- Development of AKI is frequent (49%) in patients undergoing Surgical TAVI
- AKI is correlated with higher morbidity and mortality compared to pts w/o AKI after surgical TAVI
- Male gender, PVD, higher EuroScore are risk factors for AKI
- Higher EuroScore predicted AKI
- Further investigation of reno-protective interventions is necessary to optimize the treatment of these patients

Thank you