S27_4

Modeling Arrhythmogenic Right Ventricular Cardiomyopathy with Human Induced Pluripotent Stem Cells

Oren Caspi^{1,3}, Irit Huber¹, Amira Gepstein¹, Gil Arbel¹, Leonid Meizels¹, Monther Buolos², Lior Gepstein^{1,2} ¹Faculty of Medicine, Technion, Israel ²Cardiology, Rambam Medical Center, Israel ³Internal Medicine B, Rambam Medical Center, Israel

Background:

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a primary heart muscle disorder resulting from desmosomal protein mutations; characterized pathologically by fibrofatty infiltration and clinically by arrhythmias and sudden cardiac death. We aimed to establish apatient/disease-specific human induced pluripotent stem cells (hiPSCs) model of ARVC.

Methods and Results:

Dermal fibroblasts were obtained from an ARVC patient with a novel plakophilin-2 (*PKP2*) mutation, reprogrammed to generate hiPSCs, coaxed to differentiate into cardiomyocytes and compared with healthycontrol hiPSC-derived cardiomyocytes (hiPSCs-CMs). Real-time PCR showed significant decrease in the expression of *PKP2* in the ARVC-hiPSCs-CMs. Immunostainings revealed reduced densities of *PKP2*, the associated desmosomal protein plakoglobin, and the gap-junction protein connexin-43. Electrophysiological assessment demonstrated prolonged field potential rise time in the ARVC-hiPSCs-CMs. Transmission electron microscopy identified widened and distorted desmosomes in the ARVC-hiPSCs-CMs. Clusters of lipid-droplets were identified in the ARVC-cardiomyocytes that displayed the more severe desmosomal pathology. This finding was associated withupregulation of the pro-adipogenic transcription factorperoxisome proliferator-activated receptor gamma (PPAR-g). Exposure of the cells to apidogenic stimuli augmented lipid accumulation and desmosomal distortion.

Conclusions:

The induced pluripotent stem cell technology can be used to establish an*in-vitro*model of ARVC. The hiPSCs-CMs model can recapitulate the ARVC phenotype in the dish and provide a unique platform to evaluate the early processes participating in disease pathogenesis. Finally, the ARVC-hiPSCs-CMs model may allow identifying novel therapeutic targets for this disease.