S22_2

Inadequate Reinforcement of Transmural Disruptions at Branch Points Subtends Aortic Aneurysm Formation in Apolipoprotein-E-Deficient Mice

Lilach Gavish¹, Ronen Beeri², Dan Gilon², Chen Rubinstein³, Yacov Berlatzky³, Leah Y. Gavish¹, Atilla Bulut², Mickey Harlev¹, Petachia Reissman⁴, **S. David Gertz¹** ¹Institute for Medical Research-IMRIC, Faculty of Medicine of The Hebrew University and Hadassah, Israel ²Cardiology, Hadassah University Hospital, Faculty of Medicine of The Hebrew University and Hadassah, Israel ³Vascular Surgery, Hadassah University Hospital, Faculty of Medicine of The Hebrew University and Hadassah, Israel ⁴Surgery, Shaarei Zedek Hospital, Faculty of Medicine of The Hebrew University and Hadassah, Israel

Background:

Infusion of angiotensin-II (Ang-II) in the apolipoprotein-e-deficient mouse (Apo-E^{-/-}) results in suprarenal abdominal aortic aneurysm (AAA) in 30-85% of cases. This study identifies the apparent mechanism that explains why some animals do. and others do not. develop AAA in this model.

Methods:

MaleApo-E^{-/-}mice (age 12-13wks, n=27) were infused with Ang-II via subcutaneous minipumps (1000ng/kg/min n=21) or saline (n=6) and sacrificed at 4wks. After perfusion fixation, the aortas were excised, embedded in paraffin, sectioned (5 μ thick, 250 μ intervals), and stained for histomorphometry and immunohistochemistry. Aortas were considered aneurysmatic if they exceeded 50% dilatation over the saline infused group. Sites of transmural disruption of the media (TDM) were identified, characterized, and their relationship to the 4 major aortic side branches (celiac, superior mesenteric, and left and right renal arteries) determined.

Results:

The frequency of TDMs (from a few to >1000 μ m length) in the ang-II-infused mice that developed AAA (n=9) was similar those that did not develop AAA (n=12) (AAA-vs-no-AAA: 25(69%) of 36 vs 28(58%) of 48 branches, p=0.3 by Chi-square [-vs-Saline: 4(17%) of 23, p<0.001]). However, in the animals with AAA (compared to those without AAA), the mean maximum length of the TDMs was significantly larger (1.94 \pm 1.6 –vs- 0.65 \pm 0.5mm, p=0.007 by MW-U-test), the #mac-2⁺macrophages per 0.01mm²of defect area was significantly greater (32 \pm 10 –vs- 19 \pm 11, p<0.02 by Kruskal-Wallis with Conover-Inman post-hoc), the % of the area of attempted repair occupied by collagen was significantly less (17 \pm 13%-vs-44 \pm 15%, p=0.0009 by MW-U-test), and the density of collagen per unit length of media missing was also significantly less (0.13 \pm 0.2–vs-1.14 \pm 1.0, P=0.0001 by MW-U-test).

Conclusion:

Transmural defects and inflammatory cell infiltration at branch orifices subtend aneurysm formation in the Ang-II-infused, ApoE^{-/-}mouse. Reinforcement of these defects by wall matrix appears to be a key intrinsic player in limiting AAA formation. Further studies are warranted to determine the precise role of hemodynamic forces in this model.