BMI Adapted Tube Current Intensity Significantly Reduces Radiation with Coronary CTA <u>Gutstein, Ariel</u>¹; Shafir, Gideon²; Solodky, Alejandro¹; Batler, Alexander³; Mats, Israel³; Kornowski, Ran³; Zafrir, Nili³ ¹Rabin Medical Center, Beilinson Hospital, Department of Cardiology and Nuclear Cardiology, Petach Tikva, Israel; ²Rabin Medical Center, Beilinson Hospital, Department of Radiology and Nuclear Cardiology, Petach Tikva, Israel; ³Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel Background: The use of low tube voltage (100 kVp) reduces radiation by about 50% when performing coronary computed tomography angiography (CCTA). However its use has been reserved to patients weighting up to 85 kg or with a BMI< 30 for concern of increased image noise. Thus patients weighing> 85 kgs are exposed to high radiation doses. Objective: To perform CCTA using 100 kVp on patients with a BMI < 35 irrespective of body weight while maintaining good image quality. Methods: 106 consecutive patients underwent CCTA with 64-slices CT using spiral acquisition. Tube current was 120 kVp for BMI>35, otherwise 100kVp was used. Tube current intensity was adapted to patient BMI. Tube current modulation was used. Image quality was graded 0-3 (3= best). 27 patients underwent invasive coronary angiography. Results: 100 kVp was used in 96(90.5%) of patients including in 30 weighting>85 kg. Estimated radiation exposure (mSv) was 4.5 ± 0.9 , 6.4 ± 1.3 , 7.5 ± 1.2 and 10.9 ± 2.2 for BMI categories < 25, 25-30, 30-35 and >35. Image noise was constant at 30 ± 5 hounsfield units across all BMI categories. Image quality was 2.9 ± 0.3 , 2.8 ± 0.3 , 2.5 ± 0.5 and 2.5 ± 0.4 for BMI< 25, 25-30, 30-35,>35 (p<0.05 between BMI >35 and BMI<25 and 25-30). Contrast and signal to noise, were significantly lower for BMI>35 whereas they were constant for the other BMI categories. No patient had a non-diagnostic study. Compared with invasive coronary angiography, CCTA sensitivity, specificity, NPV and PPV were 96%, 67%, 67% and 96% on a patient base (only one false positive and one false negative) and 98%, 98%, 100% and 87% among 456 coronary segments. Conclusions: CCTA is feasible with 100 kVp in >90% of patients using BMI adapted current intensity. It allows for significant radiation reduction while maintaining excellent image quality and angiographic accuracy.