

Mechanical Assistance for Acute Heart failure

Benjamin Medalion, MD

Director Heart and Lung Transplantation Rabin Medical Center, Petach Tiqva, Israel

Mechanical Assists available

- Short term (Centrifugal pumps)
 - LVAD
 - RVAD
 - BiVAD
 - ECLS (ECMO)
- Long term
 - Pulsatile (Thoratec PVAD, Syncardia TAH)
 - Axial flow (HeartMate II)
 - Centrifugal (HeartWare)

CentriMag

The Levitronix[®] CentriMag VAS is designed to provide temporary support for patients suffering potentially reversible cardiogenic shock.

FDA approved for up to 30 days of use.

Cannulation

Outcomes of a multicenter trial of the Levitronix CentriMag ventricular assist system for short-term circulatory support

Ranjit John, MD,^a James W. Long, MD,^b H. Todd Massey, MD,^c Bartley P. Griffith, MD,^d Benjamin C. Sun, MD,^e Alfred J. Tector, MD,^f O. Howard Frazier, MD,^g and Lyle D. Joyce, MD^a

J Thorac Cardiovasc Surg 141:932-9;2011

	30 d	Discharge	6 mo
All (n = 38)	18 (47%)	16 (42%)	12 (32%)
RVAD (n = 12)	7 (58%)	5 (42%)	4 (33%)
PMICS $(n = 14)$	7 (50%)	7 (50%)	6 (43%)
PCCS (n = 12)	4 (33%)	4 (33%)	2 (17%)
LVAD $(n = 8)$	3 (38%)	2 (25%)	2 (25%)
BVAD (n = 18)	8 (44%)	8 (44%)	6 (33%)

TABLE 3. Survival by group

All times are measured from device removal; all data are numbers of patients with percentages. RVAD, Right ventricular assist device; PMICS, post-acute myocardial infarction cardiogenic shock; PCCS, postcardiotomy cardiogenic shock; LVAD, left ventricular assist device; BVAD, biventricular assist device.

Tandem Heart

The Tandem Heart is inserted percutaneously transeptal.

It provides temporary support for patients suffering potentially reversible cardiogenic shock.

It is intended to be used up to 7 days

Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock

Holger Thiele^{*}, Peter Sick, Enno Boudriot, Klaus-Werner Diederich, Rainer Hambrecht, Josef Niebauer, and Gerhard Schuler

European Heart Journal (2005) 26, 1276-1283

- IABP = 20
- Tandem Heart = 21

Figure 4 Kaplan-Meier survival estimates for 30 day survival for IABP and VAD.

- The Impella 2.5 is inserted percutaneously The Impella 5 is inserted surgically
- Both provide temporary support for patients suffering potentially reversible cardiogenic shock. It is intended to be used up to 7 days

The Impella 2.5 and 5.0 devices for ST-elevation myocardial infarction patients presenting with severe and profound cardiogenic shock: The Academic Medical Center intensive care unit experience*

Annemarie E. Engström, MD; Ricardo Cocchieri, MD; Antoine H. Driessen, MD; Krischan D. Sjauw, MD; Marije M. Vis, MD; Jan Baan, MD, PhD; Mark de Jong, RN; Wim K. Lagrand, MD, PhD; Jos A. P. van der Sloot; Jan G. Tijssen; Robbert J. de Winter; Bas A. S. de Mol; Jan J. Piek; José P. J. M. Henriques, MD, PhD

Crit Care Med 2011 Vol. 39, No. 9

- At 30 days alive
 - 6/23 (26%) Impella 2.5
 - 6/12 (50%) Impella 5

Comparative outcomes in cardiogenic shock patients managed with Impella microaxial pump or extracorporeal life support

Yoan Lamarche, MD,^a Anson Cheung, MD,^a Andrew Ignaszewski, MD,^a Jennifer Higgins, MD,^a Annemarie Kaan, MCN RN,^a Donald E. G. Griesdale, MD, MPH,^b and Robert Moss, MD^a

(J Thorac Cardiovasc Surg 2011;142:60-5)

- At 30 days alive
 - 11/29 (38%) Impella 5
 - 13/32 (41%) ECLS

ECLS (ECMO)

- Modified mobile cardiopulmonary bypass
 - Easy to insert
 - Fast
 - Bed side
 - Both circulatory and respiratory support

However

- Does not unload LV (afterload increased)
- Patient is relatively immobilized

VA ECMO

TABLE I.

	Study design	Number of patients	Etiologies	Weaned from ECMO	n in-Hospital survival	30-day survival	CPC 1-2
Raithel et al ⁽¹⁵⁾ (1989)		29 patients	CA during catheterization (10 pts), shock secondary to AMI (10 pts), high risk PTCA (4 pts), postcardiotomy failure (4 pts), hypothermia (1 ptt).	6 /29 (20.6%)	6 /29 (20.6%)		
Reedy et al ⁽¹⁶⁾ (1990)	prospective	38 pts: 35 pts successfully implanted	APMI (12 pts), ischemic disease (15 pts), end- stage cardiomyopathy (7 pts), congenital heart disease (3 pts), or postoperative cardiac transplant grafi rejection (1 pt)	24 pts (24/38 63.1%)	, 9 pts (24%)		
Younger et al ⁽²⁷⁾ (1994)		25 patients (2 children) in 4 pts failure to cannulate	represent (+ pc) drowing (3 pts), AMI (9 pts), viral cardiomyopathy (2 pts) procedure complications (1 pt), pulmonary emobolism (9), aortic endocarditii (1 pt)	9/25 (36%)			
Chen et al ⁽²⁸⁾ (2003)	retrospective	57 pts	post cardiotomy (14 pts), pumonary embolism (2 pt), AMI (3 pts), cardiomyopathy (14)	38/57 (66.7%) 18/57 (31.6%)	16/57 (28%)	15/57 (26%)
Schwarz et al ⁽²⁹⁾ (2003)		46 pts 4 cannulation failure I ECMO failure	CS (25 ptsi) CA (21 pts)	28/46 (61%)	13/46 (28.2%)	01/12/46	
(Section II)		land e					
	Study design	Number of	Etiologies	Weaned from	in-Hospital survival	30-day survival	CPC 1-2
Massetti et al ⁽²¹⁾ (2005)		40 pts	AMI (16 pts), pulmonary embolism (3 pts) postcardiotomy (4 pts), cardiomypathy (4 pts), myocardial intoxication (4 pts) myocarditis (2 pts) archeuthus (4 pts)	6 pts (15%) 9 bridge to VAD 2 bridge to transplantatio	8 (8/40, 20%)	8 (8/40, 20%)	8 (8/40, 20%)
Chen et al ⁽²⁵⁾ (2006)	retrospective	36 patients	armythmias (+ pts) AMI	Weaned 25 p Withdrawn 6 wean-but-die 13 ors	ts 12 pts (33 %		
Megarbane et al ⁽⁵⁾ (2007)	prospective cohort study	17 patients 3 ECMO	toxic cardiac arrest (12 pts) non toxic	4 (4/17, 25%)	4 (4/17, 25%)	3 (3/17, 18%)	3 (3/17, 18%)
Chen et al ⁽¹⁸⁾ (2008)	observational cohort study	135 IHCA	Cardiac arrest (5 pts) ACS (66 pts), post cardiotomy (23 pts) cardiomyopathy (22 pts) myocarditis (12 pts) pulmonary embolism (5 pts),	79 (79/132) 58.5%	46 (46/135, 34.1%)		
Chen et al ⁽¹⁹⁾ (2008)	3-year prospective study	59 IHCA	others (7 pts) ACS (37 pts), congestive heart failure (6 pts), myocarditis (5 pts) post-cardiotomy (7 pts), pulmonary embolism (1 pt), unspecified causes (2 pts)	29 (29/59, 49	%) 17 (17/9, 28%)		9 (15.3%)
(Section III)			(0)00)				
	Study design	Number of	Etiologies	Weaned from	in-Hospital	30-day survival	CPC I-2
Thiagarajan et al ⁽³⁰⁾ (2009)	prospective (ELSO registry	297 pts	cardiac origin (221 pts	i),	81 (81/297, 27%)	301 1110	
Nagao et al	prospective	171	(76 pts) ACS (131 pts), cardiomypathy (8 ptr)		33 (33/171,		1-year 20
Kagawa et al ⁽⁹⁾ (2010)	retrospective	77 patients	others (32 pts) 38 IHCA 39 OHCA	IHCA:23 pts OHCA: 14 pt	NA s	IHCA: 13 (34%) OHCA: 5	IHCA: 10/38 (26%) OHCA:4/39
laski et al ⁽³²⁾ (2010)	prospective registry	150 patients (127 for cardiac arrest, 23 refractory	CA (127 pts) cardiogenic shock (23 pts)	61 patients		(13%) 39 (26%)	(10%)
Liu et al ⁽²⁰⁾	retrospective	II patients	AMI	7 pts (63.6%)	4 pts (36.4%)	NA	NA
Megarbane et al (2011) ⁽²³⁾	prospective cohort study	66 pts I cannulation	IHCA: 47 pts (71%) OHCA:19 pts (29%)		4 (4/66, 6%)	NA	NA
Le guen et al ⁽¹²⁾ (2011)		tailure 51 OHCA patients 8 ECMO failure 1 cannulation failure 42 ECMO pts	cardiac origin (44 pts), trauma (3 pts), drug overdose (2 pts) respiratory (1 pt), elettrocaution (1%).		5 (5/42, 12%)	2 pts (4%)	2 pts (4%)
et al ⁽¹¹⁾ (2011) Shin et al ⁽²⁴⁾ (2011)	-indepth review retrospective	85 IHCA 3 cannulation failure 2 ECMO failur	cardiac origin (79 pts) non cardiac origin (6 pts) e	J7 pts (58.4%	, 29 pts (34%)	24 (28%)	24 (28%)
Section IV							
	Study design	Number of patients	Etiologies V	Veaned from CMO	in-Hospital 3 survival	80-day surviva	I CPC 1-2
Avalli et al ⁽¹⁷⁾ (2012)	retrospective	42 patients (24 pts IHCA; 18 pts		HCA: 14 14/42, 33%) DHCA: 3 (7%)	NA I	HCA: 10 DHCA: 1	IHCA:9 (37.5%) OHCA:
Kim et al ⁽³³⁾ (2012)	retrospective	OHCA) 27 pts	cardiogenic shock 2 (27 pts): CA in 21	2 (81.5%)	16 (59.3%)	13 (48%)	1 (5.5%) 13 (48%)
Sakamoto et al ⁽²²⁾ (2012)	single-center, retrospective study cohor*	98 patients	pts (77.8%) ACS: cardiogenic 5 shock (28 pts, 28.6%), cardior	4 pts (55.1%)	32 (32.7%)	NA	NA
Kagawa et al ⁽³⁴⁾	multicenter cohort study	86 pts	arrest (36, 36.7%) ACS IHCA: 44 (51.1%)	3 pt (50%)	3	25 (25/88, 29%)	21 (21/88, 24%)

ECMO and CPR

ECMO No CPR ~ 40%-60%

ECPR survival to discharge ~ 20%

European Heart Journal Acute Cardiovascular Care

Lazzeri C et al. European Heart Journal: Acute Cardiovascular Care 2013;2048872613484687

ECMO: extracorporeal mebrane oxygenation; ACS: acute coronary syndrome; AMI: acute myocardial infarction; CA: cardiac arrest; IHCA: inhospital cardiac arrest; OHCA: oue-of-hospital cardiac arrest; CPC: cerebral performance categories. Patients Need to be referred **Early**, before irreversible End Organ Failure Exist

Adult Primary Implant Enrollment: n = 6561 Implants: June 2006 – June 2012

NUMBER OF HEART TRANSPLANTS BY YEAR AND LOCATION

J Heart Lung Transplant. 2012 Oct; 31(10): 1045-1095

When is medical therapy not enough?

Episodes of Acute Exacerbation of Heart Failure

Ŋ	With each event, myocardial injury may contribute to progressive LV dysfunction
onal Abilit	Acute event
Functio	
	Progression of HF is often quite difficult to predict.
	Progression may occur quickly.
	Eventually, Patients may not be viable candidates for advanced Treatment.

Timing of VAD

Medical therapy of heart failure Slow disease progression

Pacemakers in HF Delay disease progression

But: NEVER CURE!!!

Pulsatile Devices

Thoratec[®]: Paracorporeal VAD

Syncardia Total Artificial Heart

Continuous Flow Devices

 Adequate end organ perfusion in normal blood flow

Axial Flow Pumps HeartMate II

- magnetically suspended
- Small
- Silent
- Valveless
- 7,000-12,000 RPM
- Afterload dependent
- Can deliver up to 10 lit/min

Centrifugal Pumps HeartWare

- magnetically levitated
- Small
- Silent
- Valveless
- 2,000-3,000 RPM
- Afterload dependent
- Can deliver up to 10 lit/min

Bridge to transplant Bridge to Long term recovery

therapy

Bridge to decision

Bridge to Transplantation

- Was the initiative to those devices
- Most require LVAD only
- About 10% will require additional RVAD

Bridge to Recovery

- Currently unpredictable results
- It is yet to be discovered who are the patients that will recover and will not fail shortly after removal of device

Long Term Therapy

 Lack of donors and successful long term support as bridge, opened a new era

REMATCH study

<u>**R**</u>andomized <u>**E**</u>valuation of <u>**M**</u>echanical <u>**A**</u>ssistance for the <u>**T**</u>reatment of <u>**CH**</u>F

The New England Journal of Medicine

Copyright © 2001 by the Massachusetts Medical Society

VOLUME 345

NOVEMBER 15, 2001

NUMBER 20

LONG-TERM USE OF A LEFT VENTRICULAR ASSIST DEVICE FOR END-STAGE HEART FAILURE

ERIC A. ROSE, M.D., ANNETINE C. GELIJNS, PH.D., ALAN J. MOSKOWITZ, M.D., DANIEL F. HEITJAN, PH.D., LYNNE W. STEVENSON, M.D., WALTER DEMBITSKY, M.D., JAMES W. LONG, M.D., PH.D., DEBORAH D. ASCHEIM, M.D., ANITA R. TIERNEY, M.P.H., RONALD G. LEVITAN, M.SC., JOHN T. WATSON, PH.D., AND PAUL MEIER, PH.D., FOR THE RANDOMIZED EVALUATION OF MECHANICAL ASSISTANCE FOR THE TREATMENT OF CONGESTIVE HEART FAILURE (REMATCH) STUDY GROUP*

- 129 patients (68 LVAS, 61 optimal medical)
- Mean age: 66 ± 9 years
- 48% reduction in risk of death
- 1 year survival: 52% vs. 25%
- 2 year survival: 23% vs. 8%
- Improved quality of life at 1 year

Improved Survival in LVAD Trials

Percent Survival

INTERMACS Report 2013 HeartMate II Continuous Flow LVAD

ADULT HEART TRANSPLANTS

Kaplan-Meier Survival by Age Group (Transplants: January 1982 - June 2010)

INTERMACS Profiles HMII BTT Post-Approval Study

Profile	Description
1	Critical cardiogenic shock
2	Progressive decline
3	Stable, but inotrope dependant
4	Recurrent advanced heart failure
5	Exertion tolerant
6	Exertion limited
7	Advanced NYHA III

INTERMACS Profiles

Table 8. INTERMACS Clinical Profiles

Level	Description	Hemodynamic Status	Time Frame for Intervention
1	Critical cardiogenic shock, "crash and burn"	Persistent hypotension despite rapidly escalating inotropic support and eventually IABP, and critical organ hypoperfusion	Within hours
2	Progressive decline on inotropic support, "sliding on inotropes"	Intravenous inotropic support with acceptable values of blood pressure and continuing deterioration in nutrition, renal function, or fluid retention	Within days
3	Stable but inotrope dependent, "dependent stability"	Stability reached with mild to moderate doses of inotropes but demonstrating failure to wean from them because of hypotension, worsening symptoms, or progressive renal dysfunction	Elective over weeks to months
4	Resting symptoms, "frequent flyer"	Possible weaning of inotropes but experiencing recurrent relapses, usually fluid retention	Elective over weeks to months
5	Exertion intolerant, housebound	Severe limited tolerance for activity, comfortable at rest with some volume overload and often with some renal dysfunction	Variable urgency, dependent on nutrition and organ function
6	Exertion limited, "walking wounded"	Less severe limited tolerance for activity and lack of volume overload, fatigue easily	Variable urgency, dependent on nutrition and organ function
7	Advanced NYHA III "symptoms, placeholder"	Patient without current or recent unstable fluid balance, NYHA class II or III	Not currently indicated

INTERMACS indicates Interagency Registry for Mechanically Assisted Circulatory Support; IABP, intra-aortic balloon pump; and NYHA, New York Heart Association. Adapted from Alba et al.⁷⁶

Fifth INTERMACS annual report: Risk factor analysis from more than 6,000 mechanical circulatory support patients

James K. Kirklin, MD,^a David C. Naftel, PhD,^a Robert L. Kormos, MD,^b Lynne W. Stevenson, MD,^c Francis D. Pagani, MD, PhD,^d Marissa A. Miller, DVM, MPH,^e J. Timothy Baldwin, PhD,^e and James B. Young, MD^f JHLT 2013;2:141-56

	Early hazard		Constant hazard		
Risk factors for death	Hazard ratio	<i>p-</i> value	Hazard ratio	<i>p</i> -value	
Demographics					
Age (older)	1.69	< 0.0001			
Body mass index (higher)	1.47	Independent risk factors for failure			
Clinical status					
Ventilator	1.65	0,009)	
History of stroke	1.69	0.009			
INTERMACS Level 1	2.45	< 0.0001			
INTERMACS Level 2	1.89	0.0004	1.30	0.003	
Destination therapy			1.25	0.01	
Non-cardiac systems					
Diabetes			1.22	0.02	
Creatinine (higher)			1.10	0.008	
Dialysis	2.22	0.002			
Blood urea nitrogen (higher)	1.10	< 0.0001			
Right heart dysfunction					
RVAD in same operation	3.73	< 0.0001			
Right atrial pressure (higher)	1.36	0.002			
Bilirubin (higher)	1.08	< 0.0001			
Ascites			1.32	0.05	
Surgical complexities					
History of cardiac surgery			1.50	< 0.0001	
Concomitant cardiac surgery	1.34	0.02			

Table 3 Implants: June 2006–June 2012, Adult Primary Continuous-Flow LVADs and BiVADS, DT and BTT (n = 5,436)

BiVAD, biventricular assist device; BTT, bridge to transplant; DT, destination therapy; INTERMACS, Interagency Registry for Mechanically Assisted Circulatory Support LVAD, left ventricular assist device; RVAD, right ventricular assist device.

Heart Failure Related Quality of Life Kansas City Cardiomyopathy Questionnaire

Months

Adverse Events – INTERMACS

Table 5 Implants: June 2006–June 2012^a

	Pulsatile (<i>n</i>	= 594)	Continuous ($n = 5,358$)		Pulsatile/Continuous	
Adverse event	Events	Rate	Events	Rate	Ratio	<i>p</i> -value
Device malfunction	119	3.26	660	1.60	2.04	< 0.0001
Bleeding	630	17.28	3895	9.45	1.83	< 0.0001
Cardiac/vascular						
Right heart failure	90	2.47	737	1.79	1.38	0.001
Myocardial infarction	2	0.05	30	0.07	0.75	0.47
Cardiac arrhythmia	254	6.96	1919	4.66	1.50	< 0.0001
Pericardial drainage	64	1.75	251	0.61	2.88	< 0.0001
Hypertension ^b	118	3.24	351	0.85	3.80	< 0.0001
Arterial non-CNS thrombosis	14	0.38	74	0.18	2.14	0.001
Venous thrombotic event	59	1.62	289	0.70	2.31	< 0.0001
Hemolysis	23	0.63	299	0.73	0.87	0.69
Infection	832	22.81	3302	8.01	2.85	< 0.0001
Neurological dysfunction	139	3.81	754	1.83	2.08	< 0.0001
Renal dysfunction	108	2.96	582	1.41	2.10	< 0.0001
Hepatic dysfunction	48	1.32	247	0.60	2.20	< 0.0001
Respiratory failure	206	5.65	1038	2.52	2.24	< 0.0001
Wound dehiscence	18	0.49	74	0.18	2.75	< 0.0001
Psychiatric episode	87	2.39	425	1.03	2.31	< 0.0001
Total burden	2811	77.07	14927	36.22	2.13	< 0.0001

CNS, central nervous system.

^aAdverse event rates (events/100 patient months) in the first 12 months after implant for primary left ventricular assist device with implant device strategy bridge to transplant, bridge to candidacy, and destination therapy.

^bWith current reporting, identification of hypertension with continuous-flow pumps is unreliable.

The Most Difficult Group

- Ambulatory patients with advanced heart failure (INTERMACS profile 4-7)
- Factors known to be associated with worsening prognosis should be taken into account.
- Risk models need to be developed

Advanced Heart Failure: Prognostic markers

Clinical markers predicting poor outcome:

- Inability to walk one block without shortness of breath.
- HF related hospitalizations in past 6 months.
- Diuretic dose > 1.5 mg/kg/d.
- Serum sodium < 136 mmol/L.</p>
- BUN>40 mg/dL or creatinine >1.8mg/DL.

💟 Seattle Heart Failure Model Calculator

File Info

HF and Rehospitalizations

J Am Coll Cardiol 2013;61:1209-21

Estimated Survival on LVAD Support HeartMate II Risk Score

Cowger et al, J Am Coll Cardiol. 2013;61(3):313-321

Suggested Algorithm

Miller and Guglin: J Am Coll Cardiol 2013;61:1209–21

Timing of VAD

Time →

Better "too" early than too late !