Non-cardiac surgery in severe valvular disease

David Leibowitz MD Hadassah-Hebrew University Medical Center Jerusalem Israel

Recommendation on VHD Class^a Level^b Recommendation In the presence of severe VHD it is recommended C that a clinical and echocardiographic evaluation be performed and, if needed, treatment before non-cardiac surgery ^aClass of recommendation. ^bLevel of evidence. VHD = valvular heart disease.

ESC Perioperative guidelines, 2009

e160 Fleisher et al.

ACC/AHA 2007 Perioperative Guidelines

TABLE OF CONTENTS
Preamblee161
1. Definition of the Problem
1.1. Purpose of These Guidelines
1.2. Methodology and Evidence
1.3. Epidemiologye162
1.4. Practice Patterns
1.5. Financial Implicationse164
2. General Approach to the Patient
2.1. Role of the Consultant
2.2. History
2.3. Physical Examinatione165
2.4. Comorbid Diseases
2.4.1. Pulmonary Disease
2.4.2. Englimpairment e166
2.4.4. Hematologic Disorders
2.5. Ancillary Studies
2.6. Multivariable Indices to Predict
Preoperative Cardiac Morbiditye167
2.7. Clinical Assessment
2.7.1. Stepwise Approach to Perioperative Cardiac
Assessment
3. Disease-Specific Approachese170
3.1. Coronary Artery Diseasee170
3.1.1. Patients With Known CADe170
3.1.2. Influence of Age and Gendere170
3.2. Hypertension
3.3. Heart Failure
> 3.4. Cardiomyopathy
3.5. Valvular Heart Disease
2.7 Implanted Recompletes and ICDs
2.8 Pulmonary Vascular Disease and
Condenital Heart Disease
4 Surdary Spacific Issues
th ourgery opecano issues.
4.1. Urgency
4.2. Surgical Riske175
5. Supplemental Preoperative Evaluation
5.1. Assessment of LV Function
5.2. Assessment of Pick for CAD and
Assessment of Functional Canacity e178
5.2.1. The 12-Lead ECG
5.2.2. Exercise Stress Testing for Myocardial Ischemia and
Functional Capacity
5.2.3. Noninvasive Stress Testing
5.2.3.1. Radionuclide Myocardial Perfusion
Imaging Methods
5.2.3.2. Dobutamine Stress Echocardiography
5.2.3.3. Stress Testing in the Presence of Left
5.2.4 Ambulatory ECC Manitoring -196
5.3. Recommendations: If a Test Is Indicated
Which Test?
6. Implications of Guidelines and Other Rick
Assessment Strategies for Costs and Outcomes .e187
7 Device eventive Theorem
r. renoperative inerapy

JACC Vol.	50, No.	17,	2007
	October	23,	2007

7.1. Preoperative Coronary Revascularization With
CABG or Percutaneous Coronary
Interventione188
7.1.1. Rationale for Surgical Coronary Revascularizatione188
7.1.2. Preoperative CABGe188
7.1.5. Preoperative PC1
7.1.5. PCI: Bare-Metal Coronary Stents
7.1.6. PCI: DES
7.1.7. Stent Thrombosis and DES
7.1.8. Perioperative Management of Patients With Prior
7.1.9 Periceperative Management in Patients Who Have
Received Intracoronary Brachytherapy
7.1.10. Risks Associated With Perioperative Antiplatelet
7.1.11 Strategy of Percutaneous Revascularization in
Patients Needing Urgent Noncardiac Surgery
7.2. Perioperative Medical Therapy
7.2.1. Perioperative Beta-Blocker Therapy
7.2.1.1. Evidence on Efficacy of Beta-Blocker Therapy e202
7.2.1.2. Titration of Beta Blockers
7.2.1.3. Withdrawal of Beta Blockers
7.2.3. Alpha-2 Agonists
7.2.4. Perioperative Calcium Channel Blockers
7.3. Prophylactic Valvular Intervention
Before Noncardiac Surgerye208
7.4. Perioperative Arrhythmias and
Conduction Disturbances
7.5. Intraoperative Electromagnetic
Interference with Implanted Pacemakers
7.6 Proceenting Intensive Care
7.7 Venothromhoemholism/Perinheral
Arterial Disease
8. Anesthetic Considerations and Intraoperative
Management
8.1. Choice of Anesthetic Technique and
9.2 Perioperative Pain Manadement
8.3 Prophylactic Intraoperative Nitrodycerin 214
8.4. Use of TEE
8.5. Maintenance of Body Temperature
8.6. Intra-Aortic Balloon Counterpulsation
Device
8.7. Perioperative Control of Blood Glucose
Concentratione215
9. Perioperative Surveillance
9.1. Intraoperative and Postoperative Use
of PACs
9.2. Intraoperative and Postoperative Use of
ST-Segment Monitoring
9.3. Surveillance for Perioperative MIe218
9.4. Postoperative Arrhythmias and
Conduction Disorders
10. Postoperative and Long-Term Managemente221
10.1. MI: Surveillance and
Treatment
10.2. Long-Term Management
11. Conclusions

What is the risk of severe AS?

- Up to 9% of patients > 65 years
- Reduced LV compliance
 - Preload dependence
 - Reliance on atrial "kick"
- Reduced coronary reserve
 - Susceptibility to ischemia due to hypotension
- Inability to raise cardiac output

MULTIFACTORIAL INDEX OF CARDIAC RISK IN NONCARDIAC SURGICAL PROCEDURES

LEE GOLDMAN, M.D., M.P.H., DEBRA L. CALDERA, R.N., SAMUEL R. NUSSBAUM, M.D., FREDERICK S. SOUTHWICK, M.D., DONALD KROGSTAD, M.D., BARBARA MURRAY, M.D., DONALD S. BURKE, M.D., TERRENCE A. O'MALLEY, M.D., ALLAN H. GOROLL, M.D., CHARLES H. CAPLAN, M.D., JAMES NOLAN, M.D., BLASE CARABELLO, M.D., AND EVE E. SLATER, M.D.

Table 1. Multivariate Analysis — Preoperative Factors Related to the Development of Postoperative Life-Threatening or Fatal Cardiac Complications.

	Factors (in Order of Decreasing Significance)	STEPWISE SIGNIFICANCE LEVEL WHEN ADDED TO PREVIOUS FACTORS IN COLUMN
1	S ₃ gallop or jugular-vein distention on preoperative evamination	P<0.001
2	Myocardial infarction in	P<0.001
3	Rhythm other than sinus, or premature atrial contractions on preoperative electrocardiogram	P<0.001
4	>5 premature ventricular contractions/ min documented at any time before operation	P<0.001
5	Intraperitoneal, intrathoracic or aortic operation	P<0.001
6	Age >70 yr	P = 0.001
7	Important valvular aortic stenosis	P = 0.007
8 9	Emergency operation Poor general medical condition*	P = 0.007 P = 0.027

clinically indicated. We defined probably important aortic stenosis as a systolic ejection murmur of at least Grade 2 of 6 accompanied by carotid-artery and cardiac examinations consistent with aortic stenosis and, when available, by a diagnostic cardiac catheterization, an abnormal aortic valve on echocardiography or aortic-valve calcification on chest x-ray study or fluoroscopy. We were not able

	RISK FACTOR			CARDIAC COMPL	ICATIONS
				LIFE- THREATENING, BUT NONFATAL*	CARDIAC DEATH†
1	3d heart sound or jugular-vein dis- tention:	No Yes	966 35	34 (3.5)‡ 5 (14)	12 (1.2) 7 (20)
2	Recent infarction:	No Yes	979 22	36 (3.7) 3 (14)	14 (1.4) 5 (23)
3	Rhythm other than sinus, or premature atrial contractions on last electrocardiogram:	No Yes	889 112	28 (3) 11 (10)	9 (1) 10 (9)
4	>5 premature ventricular contractions/ min at any time:	No Yes	957 44	32 (3.3) 7 (16)	13 (1.4) 6 (14)
5	Intraperitoneal, intrathoracic or aortic operation:	No Yes	564 437	7 (1.2) 32 (7)	8 (1.4) 11 (2.5)
6	Age > 70 yr:	No Yes	677 324	20 (3) 19 (6)	3 (0.4) 16 (5)
7	Important valvular aortic stenosis:	No Yes	978 23	38 (4) 1 (4)	16 (1.6) 3 (13)

Table 2. Univariate Relations between the Independent Risk Variables and Development of Cardiac Complications.

Cardiac Assessment for Patients Undergoing Noncardiac Surgery

A Multifactorial Clinical Risk Index

Allan S. Detsky, MD, PhD; Howard B. Abrams, MD; Nicholas Forbath, MD; J. Gerald Scott, MD; Joseph R. Hilliard, MD

Table 1.—Modified Multifactorial Index			
Variables	Points		
Coronary artery disease			
Myocardial infarction			
within 6 mo	10		
Myocardial infarction			
more than 6 mo	5		
Canadian Cardiovascular Society angina			
Class 3	10		
Class 4	20		
Unstable angina within 3 mo	10		
Alveolar pulmonary edema			
Within 1 week	10		
Ever	5		
Valvular disease			
Suspected critical aortic stenosis	20		
Arrhythmias			
Sinus plus atrial premature beats or rhythm other			
than sinus on last preoperative electrocardiogram	5		
More than 5 ventricular premature beats	Service Services		
at any time prior to surgery	5		
Poor general medical status*	5		
Age over 70 years	5		
Emergency operation	10		

Twenty points are added to the index score if the patient is suspected of having critical aortic stenosis. This assessment is made on the basis of classic features in the history (near syncope, exertional angina, or recurrent congestive heart failure) in the setting of other signs (pulsus parvus et tardus, a thrusting left ventricular impulse in the presence of a low blood pressure, and left ventricular hypertrophy).

N = 13 !!!!!

Derivation and Prospective Validation of a Simple Index for Prediction of Cardiac Risk of Major Noncardiac Surgery

Thomas H. Lee, MD, SM; Edward R. Marcantonio, MD, SM; Carol M. Mangione, MD, SM; Eric J. Thomas, MD, SM; Carisi A. Polanczyk, MD; E. Francis Cook, ScD; David J. Sugarbaker, MD; Magruder C. Donaldson, MD; Robert Poss, MD; Kalon K.L. Ho, MD, SM; Lynn E. Ludwig, MS, RN; Alex Pedan, PhD; Lee Goldman, MD, MPH

High risk surgery, ischemic heart disease, history of congestive heart failure, history of CVA, Insulin therapy, elevated creatinine

Only 0.2% participants had aortic stenosis No mention of other valvular disease

Risk of Patients With Severe Aortic Stenosis Undergoing Noncardiac Surgery

Laurence C. Torsher, MD, Clarence Shub, MD, Steven R. Rettke, MD, and David L. Brown, MD

<u>AJC</u>, 1998

- 19 pts; mean age 75 years
- 28 surgical procedures (22 elective/ 6 emergent; 12 orthopedic, 6 intraabdominal, 4 vascular, 4 urologic, 2 other)
- 26 general anesthesia, 2 continuous spinal
- ASA3 in 14 proc., ASA 3E 1, ASA4 8 and ASA 4E in 5

 16 symptomatic; mean EF 61%; AVA index < 0.5 cm2/m2 or mean gradient > 50 mmHg

- No intraoperative cardiac events
- 2 deaths (11%)
 - 90 y.o. symptomatic male; emergent laparotomy and SMA embolectomy; MOF 21 days p-op
 - 81 y.o asymptomatic female; elective bilat TKR; periop MI, cardiogenic shock 17 days post-op

However, we have confirmed that selected patients with documented severe AS may undergo noncardiac surgery with reasonable safety, especially considering the advanced age of our patient group.

Patients with aortic stenosis: cardiac complications in non-cardiac surgery

Karen Raymer MD FRCPC, Homer Yang MD FRCPC

Can J Anes 1998

 Case-control study 55 AS patients (mean AVA 0.9) and 55 controls undergoing NCS

No significant differences in cardiac complications (5 vs
6)

•One death in AS group

•Small numbers, no data on symptoms

•Only 24 pts with severe AS (AVA < 0.8 cm2)

Cardiac Risk in Patients Aged >75 Years With Asymptomatic, Severe Aortic Stenosis Undergoing Noncardiac Surgery

<u>AJC</u>, 2010

- Case-control study
- 30 asymptomatic pts (mean age 78 yrs) with severe AS (AVA 0.77 cm/2)
- 60 matched controls with mild –moderate AS
- Most pts- intermediate risk surgery

Table 2			
Surgical procedures and surgical risk			
Variable	Patients	Controls	Overall
	(n = 30)	(n = 60)	p Value
Timing of surgery			0.37
Emergency	3 (10%)	3 (5%)	
Elective	27 (90%)	57 (95%)	
Cardiac risk stratification*			0.76
High risk	1 (3%)	3 (5%)	
Vascular surgery [†]			
Intermediate risk	25 (83%)	46 (77%)	
Orthopedic surgery [‡]	9 (30%)	9 (15%)	
Abdominal surgery [§]	3 (10%)	5 (8%)	
Urologic surgery [¶]	4 (13%)	10 (17%)	
Vascular surgery	4 (13%)	3 (5%)	
General surgery#	2 (7%)	8 (13%)	
Miscellaneous**	3 (10%)	11 (18%)	
Low risk	4 (13%)	11 (18%)	
Orthopedic surgery ^{††}	0 (0%)	2 (3%)	
Urologic surgery (transrectal	1 (3%)	1 (2%)	
prostate biopsy)			
Miscellaneous surgery ^{##}	3 (10%)	8 (13%)	
American Society of Anesthesiologists			0.19
score			
1	1 (3%)	0 (0%)	
2	1 (3%)	12 (20%)	
2E	1 (3%)	0 (0%)	
3	19 (63%)	37 (62%)	
3E	1 (3%)	2 (3%)	
4	6 (20%)	8 (13%)	
4E	1 (3%)	1 (2%)	
Anesthesia type			0.91
General	22 (73%)	49 (82%)	
Intravenous sedation	1 (3%)	1 (2%)	
Local	4 (13%)	6 (10%)	
Topical	2 (7%)	3 (5%)	
Regional block/spinal	1 (3%)	1 (2%)	

- 1 death (control group)
- No differences in periop MI (3%)
- No CHF in either group
- Non-significant increase in intraop hypotension in pt group

Effect of Severe Aortic Stenosis on the Outcome in Elderly Patients Undergoing Repair of Hip Fracture

David Leibowitz^a Gurion Rivkin^b Jochanan Schiffman^c David Rott^a A. Teddy Weiss^a Yoav Mattan^b Leonid Kandel^b

Departments of ^aCardiology, ^bOrthopedic Surgery, and ^cAnesthesiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel

Gerontology, 2008

- Case-control study of patients > 70 yrs; urgent repair of hip fx
- Cases (n = 32, mean age 84.5 yrs) mean AVA 0.71 cm2; 6 with reduced EF.
- Controls (n = 88 mean age 86 years)
- Most cases and controls local/regional anesthesia
- •No diff in 30-day mortality (6.2 % vs 6.8%)
- •Non-sig diff in cardiac complications (18.7% vs 11.8%; p = 0.35)
- No information on symptoms

Aortic Stenosis: An Underestimated Risk Factor for Perioperative Complications in Patients Undergoing Noncardiac Surgery

Miklos D. Kertai, MD, Manolis Bountioukos, MD, Eric Boersma, PhD, Jeroen J. Bax, MD, Ian R. Thomson, MD, Fabiola Sozzi, MD, Jan Klein, MD, Jos R.T.C. Roelandt, MD, Don Poldermans, MD

<u>AJM</u>, 2004

- 108 pts with moderate (n = 92) or severe (n = 16) AS
- 20% symptomatic; 40% with LVEF < 50%
- 216 controls

OR 5.2 (95% CI 1.6-17)

Characteristic	Patients with Aortic Stenosis (n = 108)	Patients without Aortic Stenosis (n = 216)	P Value
	Number (%)	or Mean ± SD	
Age (years)	69.0 ± 10.3	56.6 ± 18.0	< 0.001
Age >70 years	61 (57)	62 (29)	< 0.001
Male sex	55 (51)	119 (56)	0.47
History of angina	26 (24)	24 (11)	< 0.01
History of myocardial infarction	27 (25)	29 (13)	0.01
History of heart failure	30 (28)	6 (3)	< 0.001
History of cerebrovascular disease	20 (19)	18 (8)	0.01
Diabetes mellitus	26 (24)	20 (9)	< 0.001
Renal failure (serum creatinine ≥2 mg/dL)	22 (20)	13 (6)	< 0.001
Revised Cardiac Risk Index ≥1*	90 (83)	115 (53)	< 0.001
Hypertension	66 (61)	66 (31)	< 0.001
Pulmonary disease	22 (20)	29 (13)	0.10
Smoking	30 (29)	70 (33)	0.52
Medication			
Aspirin	15(14)	26 (12)	0.72
ACE inhibitor	55 (51)	51 (24)	< 0.001
Beta-blocker	31 (29)	43 (20)	0.09
Diuretic	35 (32)	26 (12)	< 0.001
Nitrates	22 (20)	16(7)	0.001
Statin	18 (16)	21 (10)	0.10

Perioperative Risk of Noncardiac Surgery Associated With Aortic Stenosis

Maliha Zahid, MD^{a,*}, Ali F. Sonel, MD^{a,b}, Samir Saba, MD^a, and Chester B. Good, MD, MPh^{a,b}

<u>AJC</u>, 2005

- Retrospective national database
- 1996-2002
- 5,149 patients with AS; 10,248 controls undergoing non-cardiac surgery
- ICD-9 codes, no hemodynamic data

Variable	Patients with AS $(n = 5,149)$	Controls $(n = 10,248)$	p Value
Age (yrs)	76.2 ± 0.19	75.7 ± 0.13	0.07
Men	2,986 (58.0%)	6,049 (58.8%)	0.33
Women	2,163 (42.0%)	4,235 (41.2%)	
Coronary artery disease	772 (15.0%)	1,038 (10.1%)	< 0.001
Congestive heart failure	1,522 (29.6%)	1,620 (15.8%)	< 0.001
Hypertension	1,206 (23.4%)	2,778 (27.0%)	< 0.001
Diabetes mellitus	540 (10.5%)	1,226 (11.9%)	0.008
Length of stay (d)	8.3 ± 0.11	7.9 ± 0.09	0.006
Surgical risk			
Low	3,073 (59.7%)	6,132 (59.6%)	0.99
Intermediate	1,823 (35.4%)	3,646 (35.5%)	
High	253 (4.9%)	506 (4.9%)	
AMI	199 (3.9%)	209 (2.0%)	< 0.001
Death	277 (5.4%)	589 (5.7%)	0.38
Death or myocardial infarction	427 (8.3%)	738 (7.2%)	0.01

Clinical Characteristic	Odds Ratio	95% Confidence Interval	p Value
Age >65 yrs	1.58	1.13-2.23	0.008
Coronary artery disease	1.52	1.17-1.97	0.002
Congestive heart failure	2.72	2.21-3.34	< 0.001
Hypertension	0.42	0.31-0.57	< 0.001
Diabetes mellitus	0.71	0.49-1.01	0.06
AS	1.55	1.26-1.89	< 0.001

- Presence of AS predictive of nonfatal MI only
- No difference in mortality

Can we improve risk assessment before NCS in AS patients?

AVR should be considered in asymptomatic patients with severe AS and abnormal exercise test showing fall in blood pressure below baseline.	lla	с
--	-----	---

Meta-Analysis of Prognostic Value of Stress Testing in Patients With Asymptomatic Severe Aortic Stenosis

Asim M. Rafique, MD^a, Simon Biner, MD^{a,b}, Indraneil Ray, MD^a, James S. Forrester, MD^a, Kirsten Tolstrup, MD^a, and Robert J. Siegel, MD^{a,*}

<u>AJC</u>, 2009

A	A				ris k			risk
Study or Subgroup	Normal Stress Test	Abnormal Stress Test	Weight	Odds Ratio M-H, Random, 95% Cl	í.	Odd M-H, Ran	s Ratio dom, 95% Cl	
Alborino 2002	2/12	14/18	8.8%	0.06 [0.01, 0.38]				
Amato 2001	3/22	35/44	13.4%	0.04 [0.01, 0.17]				
Das 2005	10/79	26/46	23.8%	0.11 [0.05, 0.27]	-			
Lancellotti 2005	4/43	14/26	15.4%	0.09 [0.02, 0.32]				
Marechaux 2007	10/26	20/24	14.7%	0.13 [0.03, 0.47]	((<u>)</u>	-		
Peidro 2007	10/35	37/67	23.9%	0.32 [0.13, 0.78]		-		
Total	39/217	146/225	100.0%	0.12 [0.06, 0.22]		•		
Heterogeneity: Tau ² = 0.2	22; Chi² = 7.95, df =	5 (P = 0.16); I ² = 37	7%		+			
Test for overall effect: Z =	= 6.82 (P < 0.00001))			Reduced risk	0.1	1 10 In	creased risk

E

BNP

- Levels correlates with increased ventricular volume/pressure
- Prognostic indicator in MI, CHF, valvular disease
- May be a more physiologic pre-operative assessment
- Rapid, bedside, quantitative kit available
- Results should not delay surgery

Figure 4 Survival free of aortic valve stenosis (AS)-related events in the 142 asymptomatic patients (sudden death, congestive heart failure or new AS-related onset of symptoms (dyspnoea, angina or syncope)) according to N-terminal fragment of proB-type natriuretic peptide (Nt-proBNP) values (normal<300 pg/ml, intermediate between 300 and 700 pg/ml and high>700 pg/ml) (A) overall and (B) in the subgroup of moderate and severe AS (N=102).

Cimadevilla	C,	et al.	Heart	2013;99	:461–	467.	doi:10.1	136/hear	tjnl-2012	-303284
-------------	----	--------	-------	---------	-------	------	----------	----------	-----------	---------

AVR may be considered in asymptomatic patients with severe AS, normal EF and none of the above mentioned		
exercise test abnormalities, if surgical risk is low, and one or more of the following findings is present:		
 Markedly elevated natriuretic peptide levels confirmed by repeated measurements and without other explanations 	llb	С

Biomarkers

The Predictive Ability of Pre-Operative B-Type Natriuretic Peptide in Vascular Patients for Major Adverse Cardiac Events

An Individual Patient Data Meta-Analysis

Reitze N. Rodseth, MBCHB, MMED,* Giovana A. Lurati Buse, MD,† Daniel Bolliger, MD,† Christoph S. Burkhart, MD,† Brian H. Cuthbertson, MBCHB, MD,‡ Simon C. Gibson, MBCHB, MD,§ Elisabeth Mahla, MD,|| David W. Leibowitz, MD,¶ Bruce M. Biccard, MBCHB, MMED SCI, PHD*

Durban, South Africa; Basel, Switzerland; Toronto, Ontario, Canada; Glasgow, United Kingdom; Graz, Austria; and Jerusalem, Israel

Table 4	AUCs for BNP and the RCRI in Predicting Perioperative Outcomes ($n = 632$)					
		E	BNP	RCRI		
Outcome		AUC (%)	95% CI (%)	AUC (%)	95% CI (%)	
MACEs	MACEs		75.1-85.8	64.5	56.6-72.3	
Cardiac dea	Cardiac death		71.5-88.6	67.1	53.8-80.5	
Nonfatal MI		78.6	72.2-85.5	62.3	52.8-71.7	
All-cause mortality		71.4	60.7-82.2	63.8	53.2-74.3	

AUC — area under the receiver-operating characteristic curve; BNP — B-type natriuretic peptide; Cl — confidence interval; MI — myocardial infarction; other abbreviations as in Table 3.

European Heart Journal (2013) **34**, 853–862 doi:10.1093/eurheartj/ehs445

Incremental value of high-sensitive troponin T in addition to the revised cardiac index for perioperative risk stratification in non-cardiac surgery

Michael Weber^{1,2}*, Andreas Luchner³, Seeberger Manfred⁴, Christian Mueller⁴, Christoph Liebetrau¹, Axel Schlitt⁵, Svetlana Apostolovic⁶, Radmilo Jankovic⁶, Dragic Bankovic⁷, Marina Jovic⁷, Veselin Mitrovic¹, Holger Nef¹, Helge Mollmann¹, and Christian W. Hamm¹

- 979 patients prior to "major" NCS undergoing GA
- At least 1 cardiovascular risk factor
- 2.6% mortality

Table 5	Multivariate	Cox re	egression	analyses
---------	--------------	--------	-----------	----------

	В	Wald	P-value	HR	95% CI	
					Lower	Upper
hsTnT > 14 ng/L	0.96	6.86	0.0088	2.60	1.27	5.31
Lee score ≥ 2	0.64	3.04	0.0812	1.89	0.92	3.88
Systolic blood pressure (mmHg)	-0.01	1.41	0.2347	0.99	0.98	1.01
NYHA class II–IV	0.62	3.12	0.0774	1.87	0.93	3.73

PREDICTORS OF OUTCOME IN SEVERE, ASYMPTOMATIC AORTIC STENOSIS

RAPHAEL ROSENHEK, M.D., THOMAS BINDER, M.D., GEROLD PORENTA, M.D., IRENE LANG, M.D., GÜNTHER CHRIST, M.D., MICHAEL SCHEMPER, PH.D., GERALD MAURER, M.D., AND HELMUT BAUMGARTNER, M.D.

<u>NEJM</u>, 2000

TABLE 2. RESULTS OF UNIVARIATE AND MULTIVARIATE ANALYSIS OF CLINICAL AND ECHOCARDIOGRAPHIC PREDICTORS OF OUTCOME.*

VARIABLE	No. of Patients with Variable (%)	Univa	riate Analysis	Multivariate Analysis	
		P VALUE	RISK RATIO (95% CI)	P VALUE	RISK RATIO (95% CI)
Age >50 yr	93 (74)	< 0.001	2.7 (1.5-5.2)	NS	1.1 (0.5-2.6)
Female sex	59 (47)	NS	0.9 (0.7-1.2)	NS	0.9 (0.7-1.2)
Coronary artery disease	33 (26)	< 0.05	1.7(1.0-2.9)	NS	1.1 (0.6-1.9)
Hypertension	44 (35)	NS	0.9(0.5-1.5)	NS	0.6 (0.4-1.1)
Diabetes	23 (18)	< 0.05	1.9(1.0-3.3)	NS	1.3 (0.7-2.5)
Hypercholesterolemia	69 (55)	NS	1.2(0.7-2.0)	NS	1.0 (0.6-1.7)
Aortic-jet velocity ≥4.5 m/sec	64 (51)	NS	1.3(0.8-2.1)	NS	1.1 (0.7-1.9)
Aortic-valve calcification score 3 or 4†	101 (80)	< 0.001	5.2 (2.4–13.5)	< 0.01	4.6 (1.6–14.0)

*Data are for 126 of the 128 patients; the remaining 2 patients were lost to follow-up. CI denotes confidence interval, and NS denotes not significant. Risk ratios are for the occurrence of an event (death or valve replacement).

†A score of 3 indicated moderate calcification, and a score of 4 heavy calcification.

Surgical predictors

High (Reported cardiac risk often greater than 5%)

- · Emergent major operations, particularly in the elderly
- · Aortic and other major vascular surgery
- · Peripheral vascular surgery
- Anticipated prolonged surgical procedures associated with large fluid shifts and/or blood loss Intermediate (Reported cardiac risk generally less than 5%)
- · Carotid endarterectomy
- Head and neck surgery
- · Intraperitoneal and intrathoracic surgery
- · Orthopedic surgery
- Prostate surgery

Low† (Reported cardiac risk generally less than 1%)

- Endoscopic procedures
- Superficial procedure
- Cataract surgery
- Breast surgery

Clinical predictors

Major

Unstable coronary syndromes

 Acute or recent myocardial infarction* with evidence of important ischemic risk by clinical symptoms or noninvasive study

•Unstable or severe† angina (Canadian class III or IV)‡

Decompensated heart failure

Significant arrhythmias

- ·High-grade atrioventricular block
- · Symptomatic ventricular arrhythmias in the presence of underlying heart disease
- · Supraventricular arrhythmias with uncontrolled ventricular rate

Severe valvular disease

Intermediate

Mild angina pectoris (Canadian class I or II)

Previous myocardial infarction by history or pathological Q waves

Compensated or prior heart failure

Diabetes mellitus (particularly insulin-dependent)

Renal insufficiency

Minor

Advanced age

Abnormal ECG (left ventricular hypertrophy, left bundle-branch block, ST-T abnormalities) Rhythm other than sinus (e.g., atrial fibrillation)

Low functional capacity (e.g., inability to climb one flight of stairs with a bag of groceries) History of stroke

History of stroke

Uncontrolled systemic hypertension

Can we reduce risk prior to NCS?

Pre-op BAV

Roth et al. JACC, 1989

7 pts, no compl

Levine et al. AJC, 1988

7 pts, no compl

Hayes SN et al. Mayo Clin Proc, 1989

9 pts, one death

7.3. Prophylactic Valvular Intervention Before Noncardiac Surgery

There is little information about the appropriateness of valvular repair or replacement before a noncardiac surgical

ACC/AHA perioperative guidelines, 2007

Beta blockers

Table 2 Summary of recommendations on perioperative β -blockers. Both guidelines recommend to start treatment with β -blockers early [optimally 30 days or at least 1 week before surgery (ESC), or days to weeks before surgery (ACCF/AHA)] and to titrate β -blockade to HR of 60–70 beats min⁻¹ (ESC) or 60–80 beats min⁻¹ (ACCF/AHA). β -Blocker should be omitted if SAP is not >100 mm Hg (ESC), or if there is hypotension (level not defined; ACCF/AHA). Table reproduced from Sear and Foex⁸¹ with permission

ESC guideline August 2009	ACCF/AHA guideline November 2009			
Class I	Class I			
β-Blockers recommended in patients	β-Blockers recommended in patients			
With known ischaemic heart disease or myocardial ischaemia on preoperative testing (I B)	Who are receiving β -blockers for treatment of conditions with ACC/AHA Class I indication for the drug (I C)			
Undergoing high-risk surgery (I B)				
Who were previously treated with β -blockers because of IHD, arrhythmias, or hypertension (I C)				
Class II	Class II			
β -Blockers should be considered in patients	β-Blockers are probably recommended in patients			
Undergoing intermediate-risk surgery (IIb B)	Undergoing vascular surgery who suffer from coronary artery disease or show ischaemia on preoperative testing (IIa B)			
Previously treated with β -blockers because of chronic heart failure with systolic dysfunction (IIa C)	In the presence of coronary artery disease or high cardiac risk (more than one risk factor) who are undergoing intermediate-risk surgery (IIa B)			
Undergoing low-risk surgery with risk factor(s) (IIb B)	Where preoperative assessment for vascular surgery identifies high cardiac risk (more than one risk factor; IIa C)			
	The usefulness of β -blockers is uncertain in patients			
	Undergoing vascular surgery with no risk factors who are not currently taking β-blockers (IIb B)			
	Undergoing either intermediate-risk procedures or vascular surgery with a single clinical risk factor in the absence of coronary artery disease (IIb C)			
Class III	Class III			
β -Blockers not recommended	β-Blockers not to be given			
Perioperative high-dose β -blockers without titration (III A)	High-dose β -blockers without titration are not useful and may be harmful to patients not currently taking β -blockers who are undergoing surgery (III B)			
Patients undergoing low-risk surgery without risk factors (III B)	Patients undergoing surgery who have an absolute contraindication to β-blockade (III C)			

- Normal sinus rhythm
- Heart rate between 60-80
- Adequate systemic resistance
- Maintain intravascular volume
- Invasive monitoring

through your head, but just to play it safe, I'm ordering a bunch of tests."