THE RIGHT VENTRICLE IN PULMONARY HYPERTENSION

R. DRAGU

Cardiology Dept. Rambam Health Care Campus Rappaport Faculty of Medicine Technion, Israel

Why the Right Ventricle?

Pulmonary hypertension (PH)

Right ventricle (RV) function

Outcome

RV dysfunction & outcome

Ghio, et al. JACC 2001;37:138-188

RV dysfunction & outcome

Humbert, et al. Circ 2010;122:156-163

RV dysfunction & outcome

Better prognosis	Determinants of prognosis	Worse prognosis
Νο	Clinical evidence of RV failure	Yes
Slow	Rate of progression of symptoms	Rapid
No	Syncope	Yes
I, II	WHO-FC	IV
Longer (>500 m) ^a	6MWT	Shorter (<300 m)
Peak O ₂ consumption >15 mL/min/kg	Cardio-pulmonary exercise testing	Peak O ₂ consumption <12 mL/min/kg
Normal or near-normal	BNP/NT-proBNP plasma levels	Very elevated and rising
No pericardial effusion TAPSE ^b >2.0 cm	Echocardiographic findings ^b	Pericardial effusion TAPSE ^b <1.5 cm
RAP <8 mmHg and CI ≥2.5 L/min/m ²	Haemodynamics	RAP>I5 mmHg or CI ≤2.0 L/min/m ²

RV response to PH

- Variable
- Depends on:

RV Chamber characteristics

RV response in PH

Wolferen et al. Eur Heart J 2008; 29:120-7

RV response to PH

Haddad et al. Circulation 2008; 117:1436-48.

Naeije et al. Eur Heart J 2007;9,H5–H9.

RV afterload

PVR

- used in clinical practice as equivalent for afterload
- may not reflect its complex nature

Pulmonary arterial system

- Low impedance / high distensible
 - High compliance
 - Low resistance
 - Low peripheral pulse wave reflection coefficient

Pulmonary circulation

Systemic circulation

Resistance

- small arteries
- arterioles

Pulmonary circulation

Resistance

- small arteries
- arterioles

Compliance

aorta

Compliance

entire pulmonary circulation

Windkessel model

RC constant

Capacitance and outcome

Dragu et al. IHS Congress 2013

Capacitance and outcome

Dragu et al. IHS Congress 2013

Assessment of RV function in PH

Parameters that reflect RV function

Echocardiography

- RA area¹
- RV Area¹
- TAPSE^{1,2}
- Tei index³
- RV fractional area change²
- Degree of tricuspid regurgitation²
- Pericardial effusion⁴
- Inferior vena cava collapsibility²
- Superior vena cava flow velocity pattern²

- LV eccentricity index²
- RV filling pressure⁵

MRI

- RV EF% and SV⁶
- Mass index⁷ and geometry⁸ RHC
- Right atrial pressure⁹
- Cardiac index¹⁰

Biomarkers

- NT-proBNP¹¹
- Troponin T¹²
- 1. Grünig, et al. DMW 2010. 2. Ghio S, et al. Int J Cardiol 2010.
- 3. Tei C, et al. J Am Soc Echocardiogr 1996. 4. Raymond RJ, et al. JACC 2002.
- 5. Utsunomiya H, et al. J Am Soc Echocardiogr 2009. 6. van de Veerdonk M, et al. JACC 2011.
- 7. Hagger, et al. Rheumatology 2009. 8. Mauritz, et al. Chest 2012.
- 9. McLaughlin VV, et al. Circulation 2002. 10. D'Alonzo GE, et al. Ann Intern Med 1991.
- 11. Nagaya N, et al. JACC 1998. 12. Torbicki A, et al. Circulation 2003.

Variables in good correlation with:

- Hemodynamics
- Anatomy

Limited visualisation of RV:

- Complex geometry
- Extensive trabeculations
- Retrosternal position

Echo - Pericardial effusion

Hinderliter, et al. AJC 1999; 84:481-4.

Echo - Pericardial effusion

Raymond RJ, et al. JACC 2002; 39:1214-9.

Zhang, et al. Chest 2011; 140:301-9.

Echo - TAPSE

- Longitudinal movement of lateral tricuspid annulus towards apex at peak systole
- Abundant longitudinal fibres

 Correlates with RV systolic function

Rudski LG, et al. J Am Soc Echocardiogr 2010; 23:685-713.

Echo - TAPSE

Forfia, et al. Am J Respir Crit Care Med 2006; 174:1034-41.

Echo - RV morphology

Survival curves in patients with RV wall thickness \leq 6.6 mm

Echo - 2D longitudinal strain

- Percentage change in myocardial deformation
- Doppler or speckles
- More negative = better contractility
- Unlike TAPSE it takes whole RV into account
- Load dependent

Freed, et al. Cur Cardiol Rep 2012; online early pub.

Echo - 2D longitudinal strain

Sachdev, et al. Chest 2011; 139:1299-1309.

Echo - 3D

- Rapid acquisition of full volume 3D data
- Accurate & reproducible measures of RV

Sugeng, et al. JACC Imag 2010; 3:10-8.

CMRI - Stroke volume

Van Wolferen SA, et al. Eur Heart J 2007; 28:1250-7.

CMRI - RV ejection fraction

Freed *et al. JCMR* 2012; 14:11. van de Veerdonk *et al. JACC* 2011; 58:2511-9.

CMRI - Myocardial delayed enhancement

CMRI - Myocardial delayed enhancement

Right ventricular insertion point-late gadolinium enhancement (RVIP-LGE)

Freed, *et al. JCMR* 2012; 14:11. Shehata, *et al. AJR* 2011; 196:87-94.

BNP as surrogate of RV function

Nagaya N, et al. J Am Coll Cardiol 1998; 31:202-8.

Prognostic value of cardiac troponin T in PAH and CTEPH patients

Torbicki A, et al. Circulation 2003; 108:844-8.

Conclusion

Sir William Harvey 1616 – "De Motu Cardis"

"Thus the right ventricle may be said to be made for the sake of transmitting blood through the lungs, not for nourishing them."

- Paucity of knowledge regarding RV
- Understanding of RV adaptation to PH crucial for Tx.