
Biomarkers of Sudden Death

James L. Januzzi, Jr, MD, FACC, FESC Associate Professor of Medicine Harvard Medical School Roman W. DeSanctis Endowed Clinical Scholar Director, Cardiac ICU Massachusetts General Hospital

Disclosures

 <u>Grants</u>: Roche Diagnostics, Siemens, Critical Diagnostics, Thermo Fisher, Singulex, BG Medicine, NHLBI

 <u>Consulting</u>: Roche Diagnostics, Critical Diagnostics, BG Medicine, Zensun, Amgen, Novartis

The Public Health Dilemma

- Public health burden: ~ 400,000 SCDs/year in US:
 - SCD accounts for over 50% of all cardiac deaths and 15 to 20% of total mortality.
- Majority of SCDs occur in "low-risk" populations
- Results of treatment are poor:
 - Overall survival to hospital discharge for resuscitated SCD ranges from 2-5% in most major urban centers to 15-26% in cities with advanced EMS systems.

LVEF as Sole Risk Stratifier for SCD

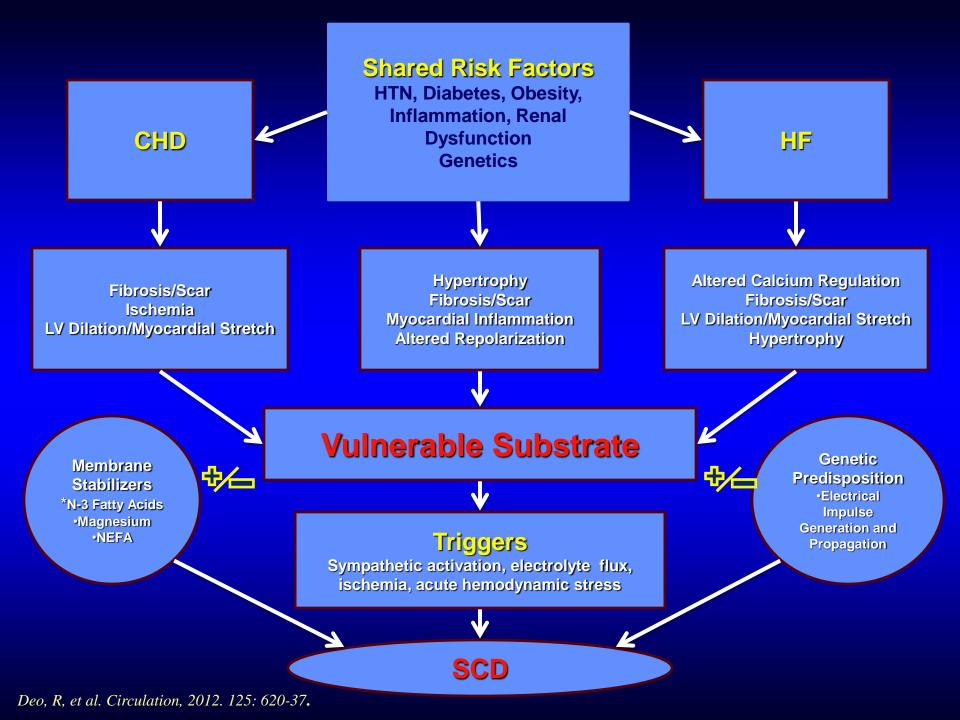
- LVEF lacks sensitivity since the majority of patients who suffer a cardiac arrest will have an LVEF > 0.35.
- LVEF lacks specificity for predicting SCD as compared to other modes of cardiovascular death, thus limiting the effectiveness of the ICD.
- Difficult/expensive to implement as a screening strategy in the general population.

Other predictors of SCD risk are needed.

HEART (ENTER

Challenges to Biomarker Studies of SCD

Prospective Samples:


- Blood collection prior to death/event
- Likely altered by the preceding cardiac arrest and/or death
- Samples are finite

Sudden Cardiac Death/Arrhythmic Event is a Rare Event

- Individual studies generally have low numbers of events
- Large sample sizes needed for replication and modeling

Biomarkers reflect processes that are RISKS for SCD

There is no biomarker specific for arrhythmia (yet)

Biomarkers Potential Candidate Pathways

- Inflammation
- Myocardial Dysfunction and Fibrosis
- Renin-Angiotensin-Aldosterone System
- Membrane Stabilization
- Metabolic Markers
- Renal Dysfunction

Selected biomarkers in these pathways have been associated with fatal CHD events to a greater degree than non-fatal event MASSACHUSETTS GENERAL HOSPITA

HEART CENTER

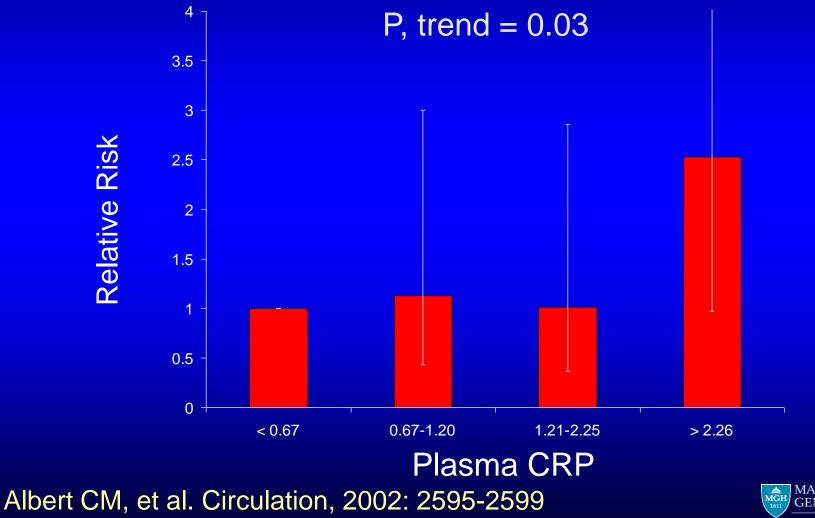
CRP, Lipids, Homocysteine and SCD among Healthy Men

97 SCDs/ 192 controls

	Relative Risk (95%CI) by Quartile					
Variable	1	2	3	4	P, Trend	
C-reactive protein	1.0	1.12 (0.51-2.46)	1.19 (0.55– 2.61)	2.78 (1.35-5.72)	< 0.001	
Total cholesterol	1.0	1.50 (0.73 - 3.06)	1.38 (0.70 - 2.74)	1.43 (0.70 - 2.95)	0.37	
LDL cholesterol	1.0	1.59 (0.80 - 3.15)	0.91 (0.44 - 1.89)	1.48 (0.75 - 2.91)	0.56	
HDL cholesterol	1.0	0.72 (0.36 - 1.45)	0.65 (0.33 - 1.25)	0.63 (0.31 - 1.26)	0.17	
Triglycerides	1.0	0.87 (0.43 - 1.77)	1.03 (0.52 – 2.04)	1.01 (0.52 – 1.97)	0.87	
TC/HDL-C ratio	1.0	1.07 (0.51 - 2.26)	1.24 (0.61 - 2.50)	1.89 (0.92 – 3.86)	0.06	
Homocysteine	1.0	0.73 (0.38 - 1.45)	0.61 (0.29 - 1.28)	1.06 (0.51 – 2.20)	0.98	

Albert CM, et al. Circulation, 2002: 2595-2599

CRP, Lipids, Homocysteine and SCD among Healthy Men


97 SCDs/ 192 controls

	Relative Risk (95%CI) by Quartile					
Variable	1	2	3	4	P, Trend	
C-reactive protein	1.0	1.12 (0.51-2.46)	1.19 (0.55– 2.61)	2.78 (1.35-5.72)	< 0.001	
Total cholesterol	1.0	1.50 (0.73 - 3.06)	1.38 (0.70 - 2.74)	1.43 (0.70 - 2.95)	0.37	
LDL cholesterol	1.0	1.59 (0.80 - 3.15)	0.91 (0.44 - 1.89)	1.48 (0.75 - 2.91)	0.56	
HDL cholesterol	1.0	0.72 (0.36 - 1.45)	0.65 (0.33 - 1.25)	0.63 (0.31 - 1.26)	0.17	
Triglycerides	1.0	0.87 (0.43 - 1.77)	1.03 (0.52 – 2.04)	1.01 (0.52 – 1.97)	0.87	
TC/HDL-C ratio	1.0	1.07 (0.51 - 2.26)	1.24 (0.61 - 2.50)	1.89 (0.92 – 3.86)	0.06	
Homocysteine	1.0	0.73 (0.38 - 1.45)	0.61 (0.29 - 1.28)	1.06 (0.51 – 2.20)	0.98	

Albert CM, et al. Circulation, 2002: 2595-2599

CRP and Sudden Cardiac Death

Inflammatory Markers and SCD versus NSCD The Prime Study

Table 3.Adjusted HRs and 95% Confidence Intervals of StudyOutcomes by Thirds of hs-CRP, Fibrinogen, and IL-6. ThePRIME Study

	Sudden Death (n=50)	Nonsudden Coronary Death (n=34)	Nonfatal CHD (n=580)
Hs-CRP (mg/L)			
1st tertile (≤1.51)	1	1	1
2nd tertile (≤3.70)	1.96 (0.75–5.08)	0.80 (0.20–3.17)	1.17 (0.87–1.57)
3rd tertile (>3.70)	1.27 (0.51–3.17)	1.86 (0.50–6.95)	1.48 (1.10–1.99)
P for trend	0.58	0.14	0.017
1-SD log (0.98)	1.04 (0.71–1.52)	1.79 (0.96–3.36)	1.16 (1.03–1.32)
Fibrinogen (g/L)			
1st tertile (≤2.89)	1	1	1
2nd tertile (≤3.46)	0.75 (0.32–1.78)	1.86 (0.52–6.62)	0.96 (0.73-1.28)
3rd tertile (>3.46)	1.90 (0.76–4.75)	6.04 (1.37–26.71)	1.32 (0.99–1.75)
$\mathcal P$ for trend	0.16	0.017	0.011
1-SD log (0.26)	1.22 (0.84–1.78)	1.64 (1.03–2.61)	1.16 (1.04–1.31)
IL-6 (pg/mL)			
1st tertile (≤0.06)	1	1	1
2nd tertile (≤0.48)	1.82 (0.68–4.85)	2.16 (0.60–7.75)	1.25 (0.93–1.68)
3rd tertile (>0.48)	3.06 (1.20–7.81)	2.97 (0.84–10.49)	1.53 (1.13–2.06)
$\mathcal P$ for trend	0.02	0.095	0.021
1-SD log (2.94)	1.57 (1.06–2.35)	1.72 (0.99–2.27)	1.16 (1.02–1.31)

HRs were estimated by conditional logistic regression that accounted for matching variables (age, centre, and baseline examination date) and that were adjusted for BMI, smoking status, diabetes, HDL, and Total-C.

Nested case control among 9771 asymptomatic European men

50 SCD 34 NSCD

Only IL-6 predicted SCD

Empana J-P et al. Arterioscler Thromb Vasc Biol. 2010

NT-proBNP, hsCRP, and lipids and SCD risk among women

Higher NT-proBNP is associated with SCD in apparently healthy women

	Multivariable Relative Risk (95%CI) by Quartile					
Variable	1	2	3	4	P, Trend	
NT-proBNP	1.0	1.33 (0.58 – 3.02)	1.34 (0.58 – 3.10)	2.37 (0.97 – 5.80)	0.05	
hs-CRP	1.0	1.18 (0.51 – 2.72	1.10 (0.45 – 2.65)	1.30 (0.54 – 3.14)	0.60	
TC /HDL-C ratio	1.0	1.01 (0.42 – 2.43)	1.38 (0.54– 3.53)	1.34 (0.49–3.66)	0.57	
LDL cholesterol	1.0	1.37 (0.59 – 3.20)	1.66 (0.66 – 4.20)	1.36 (0.53 – 3.51)	0.57	
HDL cholesterol	1.0	0.81 (0.37 – 1.76)	1.08 (0.49 – 2.39)	1.25 (0.53 – 2.93)	0.53	
Triglycerides	1.0	0.85 (0.37 – 1.93)	0.81 (0.32- 2.03)	1.46 (0.56 – 3.83)	0.31	

NT-proBNP, hsCRP, and lipids and SCD risk among women

Higher NT-proBNP is associated with SCD in apparently healthy women

	Multivariable Relative Risk (95%Cl) by Quartile					
Variable	1	2	3	4	P, Trend	
NT-proBNP	1.0	1.33 (0.58 – 3.02)	1.34 (0.58 – 3.10)	2.37 (0.97 – 5.80)	0.05	
hs-CRP	1.0	1.18 (0.51 – 2.72	1.10 (0.45 – 2.65)	1.30 (0.54 – 3.14)	0.60	
TC /HDL-C ratio	1.0	1.01 (0.42 – 2.43)	1.38 (0.54– 3.53)	1.34 (0.49– 3.66)	0.57	
LDL cholesterol	1.0	1.37 (0.59 – 3.20)	1.66 (0.66 – 4.20)	1.36 (0.53 – 3.51)	0.57	
HDL cholesterol	1.0	0.81 (0.37 – 1.76)	1.08 (0.49 – 2.39)	1.25 (0.53 – 2.93)	0.53	
Triglycerides	1.0	0.85 (0.37 – 1.93)	0.81 (0.32- 2.03)	1.46 (0.56 – 3.83)	0.31	

NT-proBNP vs hsCRP and SCD in women in Nurses' Health Study

Higher NT-proBNP is associated with SCD in apparently healthy women

Biomarker	RR (95% CI) per 1-SD in Log Variable	<i>P-</i> value	RR (95%CI) for values above the 80 th percentile	<i>P-</i> value	RR (95%Cl) for Clinical Cut- Points*	<i>P</i> -value
NT-proBNP						
Model 1 (age, fasting)	1.32 (1.01 - 1.71)	0.04	1.50 (0.83 - 2.71)	0.18	3.60 (1.43 - 9.10)	0.007
Multivariable Model**	1.49 (1.09 -2.05)	0.01	1.99 (0.97 - 4.12)	0.06	5.68 (1.78 -18.2)	0.003
hsCRP						
Model 1 (age, fasting)	1.33 (1.03 - 1.70)	0.03	1.57 (0.92 - 2.68)	0.10	1.40 (087-2.24)	0.17
Multivariable Model**	1.17 (0.85 - 1.61)	0.34	1.49 (0.76 - 2.93)	0.25	1.05 (0.58-1.91)	0.86

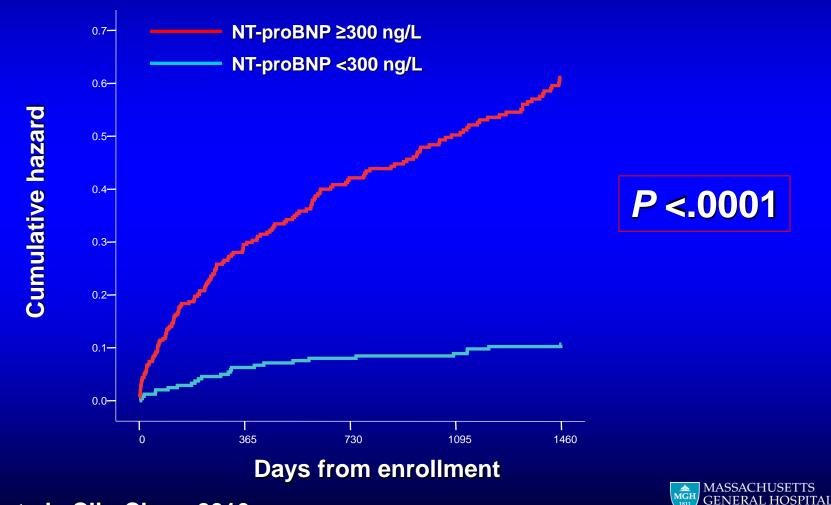
* hsCRP (>3.0 mg per liter) and NT-pro-BNP (> 389 pg/mL)

**Controlled simultaneously for age, smoking, and fasting status, history of hypertension, history of diabetes, alcohol consumption (<0.1 g, 0.1-14.9, 15.0 to 29.9, 30+), parental history of myocardial infarction prior to age 60, body-mass index (<25 kg/m2, 25-30 kg/m2, >=30 kg/m2), physical activity (quintiles of metabolic equivalent (MET-hours)), current postmenopausal hormone use, GFR, aspirin use>=22 days/month, plasma NT-proBNP, hsCRP, triglyceride, and TC/HDL-Ratio levels

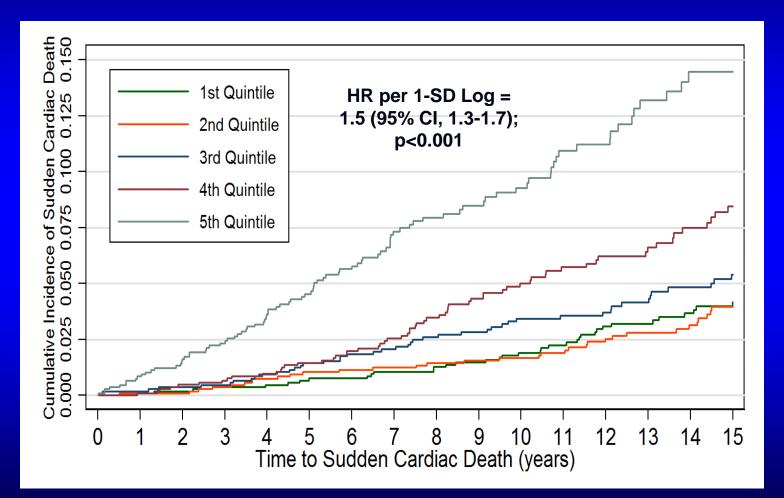
NT-proBNP vs hsCRP and SCD in women in Nurses' Health Study

Higher NT-proBNP is associated with SCD in apparently healthy women

Biomarker	RR (95% CI) per 1-SD in Log Variable	<i>P-</i> value	RR (95%CI) for values above the 80 th percentile	<i>P-</i> value	RR (95%CI) for Clinical Cut- Points*	<i>P</i> -value
NT-proBNP						
Model 1 (age, fasting)	1.32 (1.01 - 1.71)	0.04	1.50 (0.83 - 2.71)	0.18	3.60 (1.43 - 9.10)	0.007
Multivariable Model**	1.49 (1.09 -2.05)	0.01	1.99 (0.97 - 4.12)	0.06	5.68 (1.78 -18.2)	0.003
hsCRP						
Model 1 (age, fasting)	1.33 (1.03 - 1.70)	0.03	1.57 (0.92 - 2.68)	0.10	1.40 (087-2.24)	0.17
Multivariable Model**	1.17 (0.85 - 1.61)	0.34	1.49 (0.76 - 2.93)	0.25	1.05 (0.58-1.91)	0.86

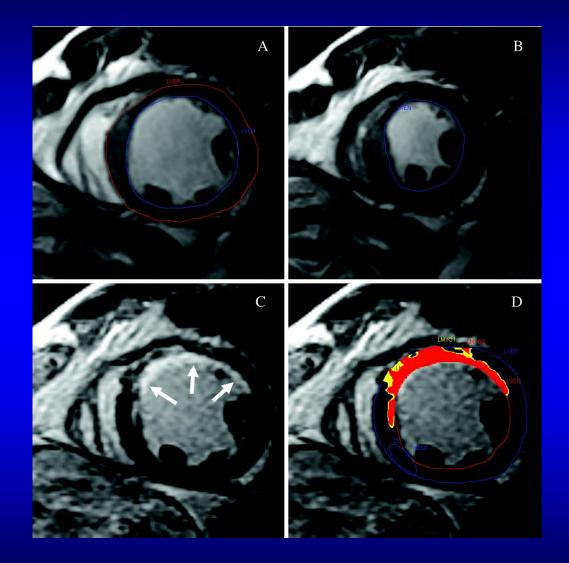

* hsCRP (>3.0 mg per liter) and NT-pro-BNP (> 389 pg/mL)

**Controlled simultaneously for age, smoking, and fasting status, history of hypertension, history of diabetes, alcohol consumption (<0.1 g, 0.1-14.9, 15.0 to 29.9, 30+), parental history of myocardial infarction prior to age 60, body-mass index (<25 kg/m2, 25-30 kg/m2, >=30 kg/m2), physical activity (quintiles of metabolic equivalent (MET-hours)), current postmenopausal hormone use, GFR, aspirin use>=22 days/month, plasma NT-proBNP, hsCRP, triglyceride, and TC/HDL-Ratio levels


NT-proBNP and mortality in HF

HEART CENTER

Januzzi, et al., Clin Chem 2010


NT-proBNP and SCD among the Elderly: The Cardiovascular Health Study

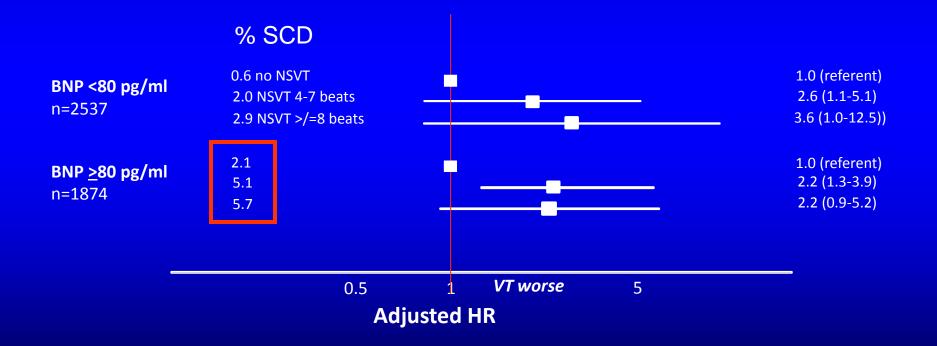
Patton, KK et al. Heart Rhythm 2011

Peri-Infarct Zone and Post–MI Mortality

Adjusted HR=1.42 per 10% increase in (%MDE_{periphery}). *P*=0.005

Yan, A. T. et al. Circulation 2006;114:32-39

Predictive Value of BNP for SCD Post-MI



Tapanainen JM. et al. JACC 2004

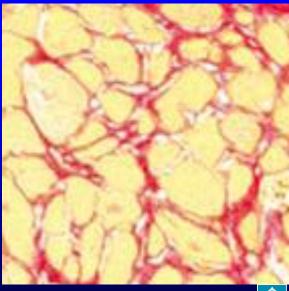
Predictive Value of BNP for SCD in ACS: MERLIN TIMI 36

Although the relative risk for SCD was similar with higher incidence of VEA, when BNP was elevated, the ABSOLUTE risk was 2x higher

Scirica et al, Circulation 2010

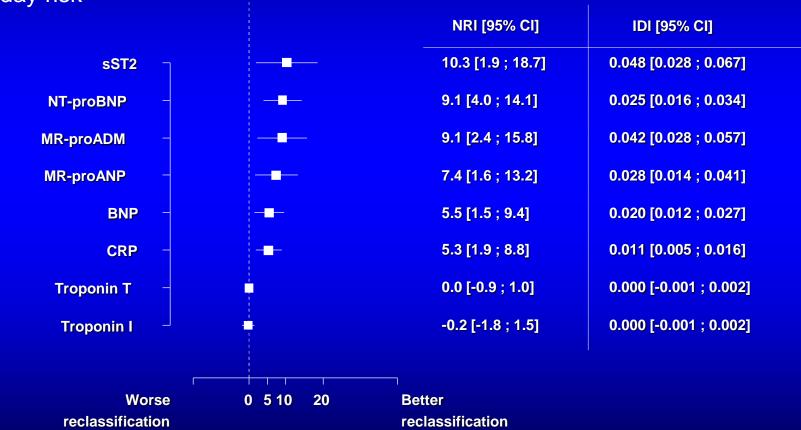
B-Type Natriuretic Peptide Predicts Sudden Death in Patients With Chronic Heart Failure


Berger, R. et al. Circulation 2002;105:2392-2397


ST2 plays a role in reducing cardiomyocyte hypertrophy and fibrosis

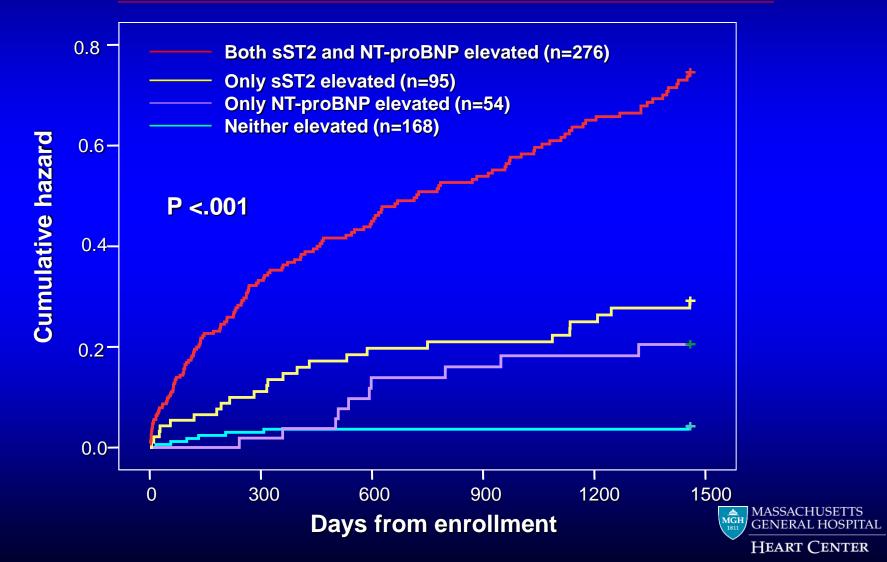
Abnormalities in ST2 experimentally result in severe cardiac remodeling and heart failure

Intact sST2

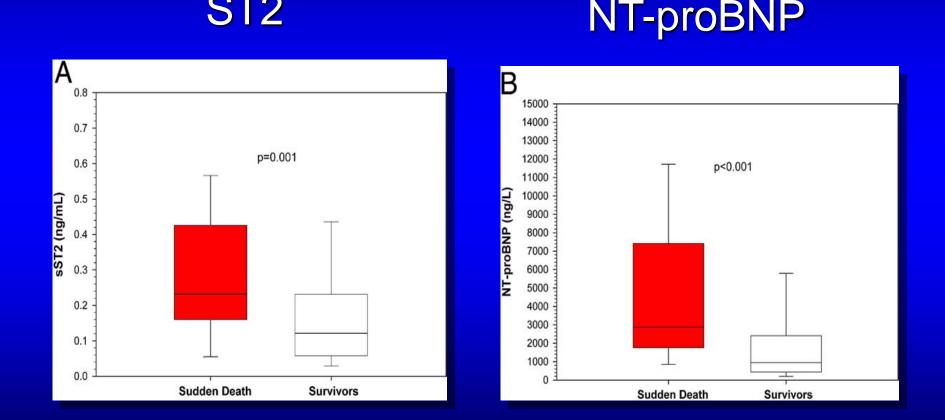

sST2 knock out

Multiple biomarkers in ADHF: the GREAT Network Analysis

365 day risk

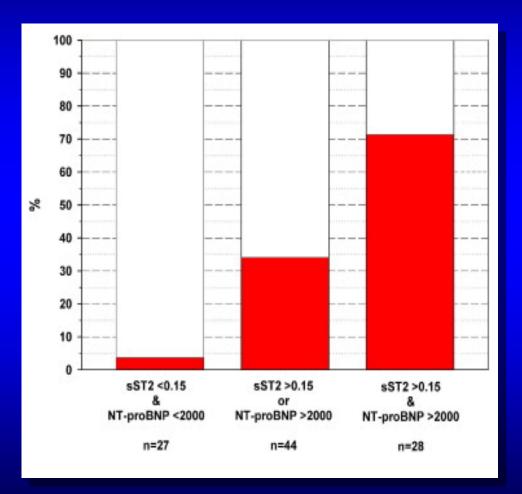


Lassus, et al, Int Jour Cardiol, 2013



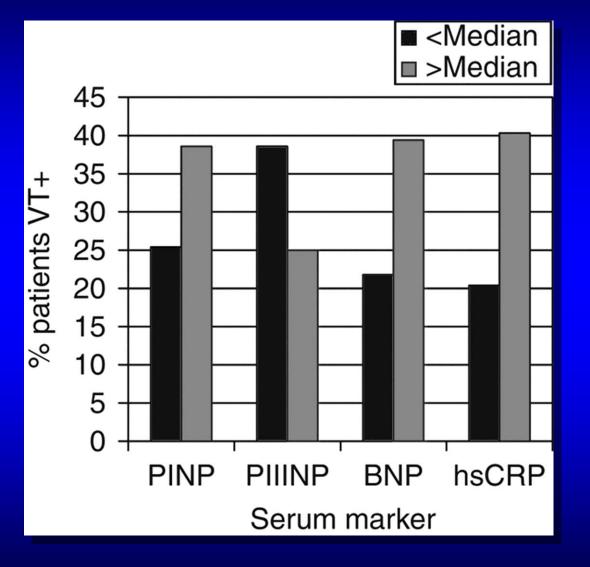
Additive value of ST2 to NTproBNP in long term prognosis

Soluble ST2 and NT-proBNP and **SCD** in Heart Failure



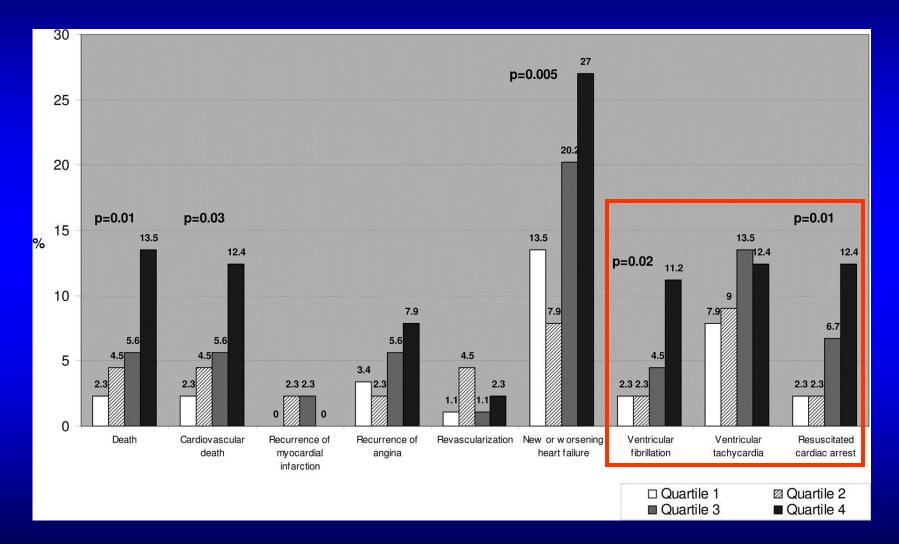
Pascual-Figal DA. et al. JACC 2009

ST2


Soluble ST2 and NT-proBNP and SCD in Heart Failure

Pascual-Figal DA. et al. JACC 2009

Biomarker Predictor of ICD discharges for VT/VF

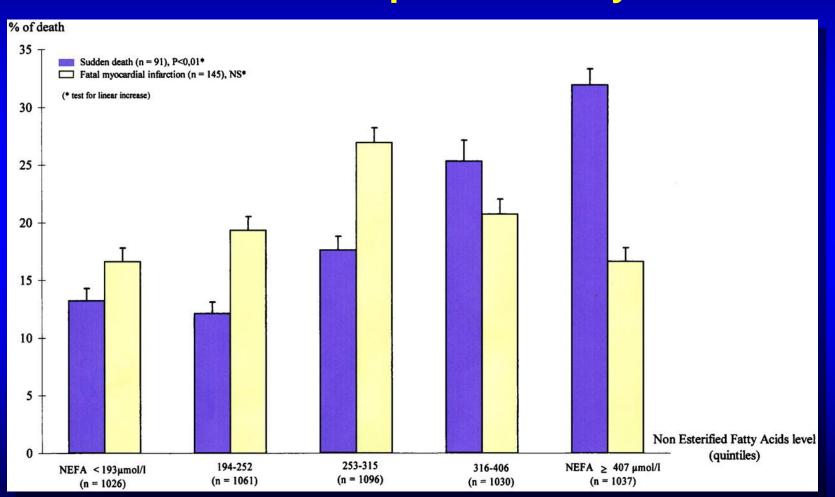


Biomarker patterns consistent with fibrosis, myocyte stretch, or inflammation are associated with VT/VF

Blangy, H. et al. Europace 2007 9:724-729;

Events Post-MI Mortality and Aldosterone Levels

MASSACHUSETTS GENERAL HOSPITAL HEART CENTER


Biomarkers Potential Candidate Pathways

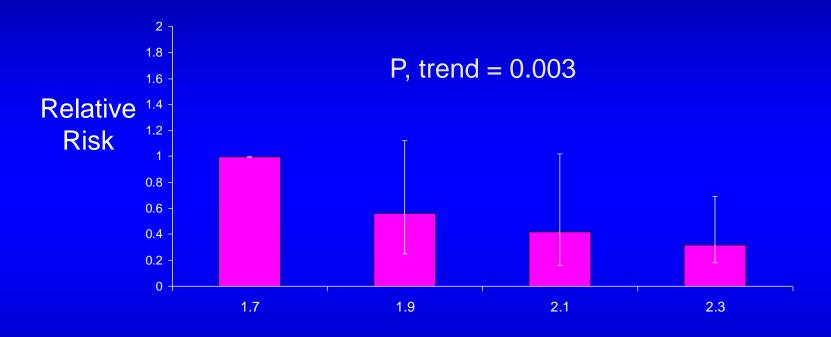
- Inflammation
- Myocardial Dysfunction and Fibrosis
- Renin-Angiotensin-Aldosterone System
- Membrane Stabilization
- Metabolic Markers
- Renal Dysfunction

Selected biomarkers in these pathways have been associated with fatal CHD events to a greater degree than non-fatal events MASSACHUSETTS GENERAL HOSPITA

HEART CENTER

Risk of Sudden Death versus Fatal Myocardial Infarction According to Circulating NEFA level Paris Prospective Study

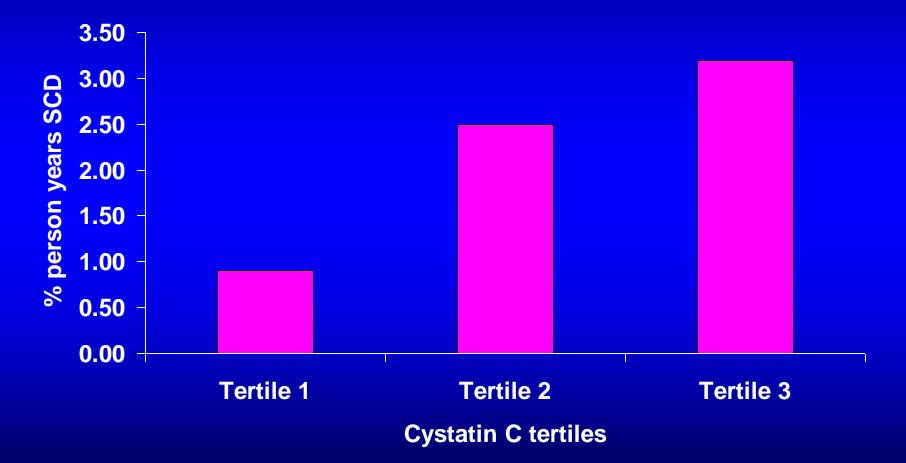
Jouven, X. et al. Circulation 2001;104:756-761


Relative Risk of SCD According to Blood Long Chain n-3 Fatty Acid Level

<u>N-3 Fatty Acid</u> <u>Level</u>	<u>Relative Risk</u>	<u>95% CI</u>
<u>≤</u> 4.35	1.0	Referent
4.35 – <u>≤</u> 5.15	0.55	(0.18 – 1.70)
5.15 - <u><</u> 6.09	0.28	(0.09 – 0.87)
> 6.09	0.19	(0.05 – 0.71)
	P, trend = 0.007	

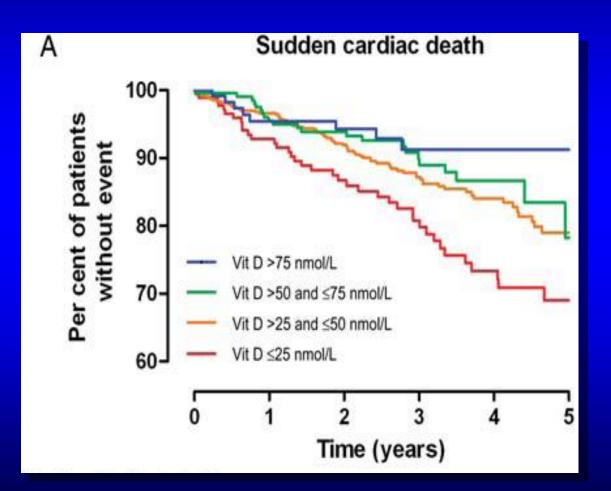
Albert CM, et al. N Engl J Med, 2002; 346:1113-8

Plasma Magnesium and Sudden Cardiac Death


Plasma Magnesium Level

* Model adjusted for: matching factors, aspirin use, BMI, physical activity, alcohol, history of diabetes, history of hypertension, family history of MI, hormone therapy, intake of Mg, K, Ca, marine n-3 fat, vitamin D, total:HDL cholesterol, GFR, CRP, NT-proBNP

Chiuve et al. Am J Clin Nut 2011

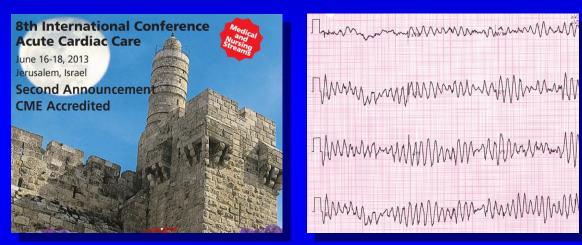

Cystatin C and SCD Risk in the Elderly

Deo R et al. Circ Cardiovasc Qual Outcomes 2010.

Vitamin D and SCD in Hemodialysis Patients

Low vitamin D was associated with SCD in patients with uniformly severe CKD

Drechsler C et al. European Heart Journal 2010


Conclusion

- Advancements in SCD prevention will require improved markers to identify the "pro-arrhythmic" substrate
- Biomarkers may be promising for SCD prediction
- Likely, prediction will involve a combination of markers (genes, proteins, metabolic markers, and imaging)
- Surrogate endpoints are useful for raising hypotheses, but hard SCD endpoints will be needed to definitively test hypotheses
- Large populations at different levels of SCD risk will be needed to accumulate the necessary SCD endpoints and to allow for replication of the results

Biomarkers of Sudden Death

James L. Januzzi, Jr, MD, FACC, FESC Associate Professor of Medicine Harvard Medical School Roman W. DeSanctis Endowed Clinical Scholar Director, Cardiac ICU Massachusetts General Hospital

