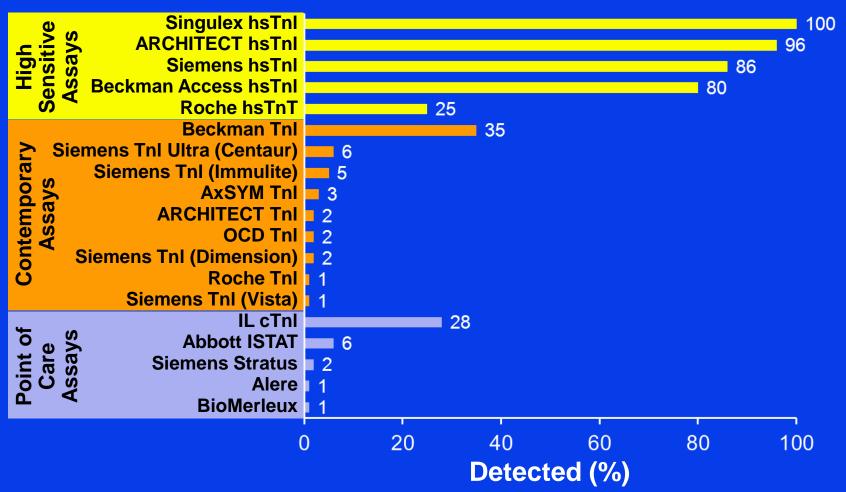
Allan S. Jaffe, MD.*

Consultant - Cardiology & Laboratory Medicine
Professor of Medicine
Chair, CCLS Division, Department of Laboratory
Medicine and Pathology
Mayo Clinic and Medical School
Rochester, Minnesota

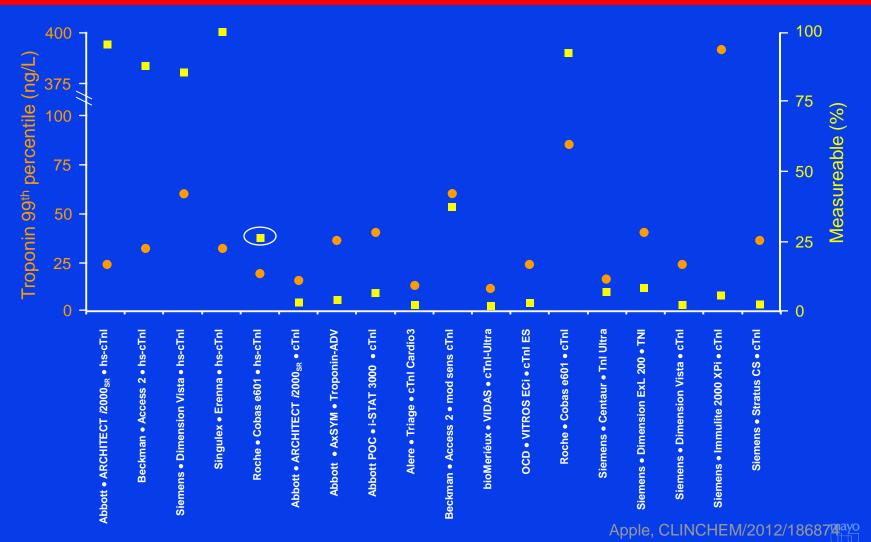
*Dr. Jaffe is or has been a consultant to most of the major diagnostic companies as well as Amgen.

Use the proper definition for high sensitivity



Cardiac Troponin Assay Score Card

Acceptance <u>Designation</u>	Total Precision at 99th Percentile
Guideline Acceptable	≤ 10%
Clinically Usable	>10 to ≤ 20%
Not Acceptable	> 20%
Assay Designation	Measurable Normal Values below
	99 th percentile
Level 4	<u>≥</u> 95%
3rd gen hs	
Level 3	75 to < 95%
2nd gen hs	
Level 2	50 to < 75%
1st gen hs	
Level 1	< 50%
Contemporary	


Comparison of Normals Detected With Various Assays

99th Percentile Values and Percent of Patients Detected by Various Cardiac Troponin Assays

ORIGINAL ARTICLE

Early Diagnosis of Myocar with Sensitive Cardiac Tre

Tobias Reichlin, M.D., Willibald Hochholzer, N Stephan Steuer, M.D., Claudia Stelzig, M.Sc. Stefan Biedert, M.Sc., Nora Schaub, M.D., Mihael Potocki, M.D., Markus Noveanu, M.D. Raphael Twerenbold, M.D., Katrin Winkler, M

ABSTRACT

The rapid and reliable diagnosis of acute myor one. University Hospital, Basel (T.R., W.H.,

from the Department of Internal Medi-

CS. S.H. S. Bedert, N.S. CB. M.P.

and, or at chematier@ubbs.ch.

N Ergl J Med 2009;361 858-67.

THE COREN, COLLEG IS. BASSETT): and Limit matching-ful, Zurich (E.S.) — all in Sort— We conducted a multicenter study to examine a matching-their Zentrum Bad Sections. The Computer Section of the Cardina Engenerate Repr department from 718 consecutive patients w to de investigación. SC III Servicio de tive of acute myocardial infarction. Cardiac tive of acute myocardial infarction. Roche High-Sensitive Troponin T, Roche Tro Note (CW). Address report requests to Cr. Audrea at the Copariment of internal and a standard assay (Roche Troponin T., Roche Tro-deduce. Deleterly Vengular Basel, Pe-two independent cardiologists.

Acute responsability infarction was the adj (17%). The diagnostic accuracy of measure

Implementation of a Sensitive Tro Assay and Risk of Recurrent Myc Infarction and Death in Patients With Suspected Acute Coronary

Nicholas L. Mills, MD, PhD Antonia M. D. Churchhouse, BSc, MD Kuan Ken Lee

Atul Anand, BSc, MD David Gamble, MD Amoop S. V. Shah, MD

Elspeth Paterson, MD Margaret MacLeod, BSc

Catriona Graham, MSe Simon Walker, DM, FRCPath Martin A. Denvir, PhD, FRCP

Keith A. A. Fox, FESC, FMedSci David E. Newby, FESC, FMedSci

ECENT REPORTS HAVE INDIcated that the latest generation of sensitive troponin assays can increase diagnostic performance and improve the early diagnosis of myocardial infarction (MI).12 Lowering the threshold for detecting cardiac troponin is a highly controverstal issue among clinicians with cardiologists, physicians, and clinical bio-Charming anneousmus to whether the benefits of small improvements in sen-charges will our weight their minimum that

Context Although troponin assays have become

Design, Setting, and Patients All conse ACS to the Royal Infirmary of Edinburgh, Ed ruary 1-July 31, 2008, during the validation 31, 2009, during the implementation phase myocardial necrosis from 0.20 to 0.05 ng/l stratified into 3 groups (< 0.05 ng/mL, 0.05 the validation phase, only concentrations 0.20 ng/mL were reported to clinicians.

Main Outcome Measure Even Tools for the Department of Medicine II patients grouped by plasma troposin con T.K., T.Z., S.T., A.R., E.C., A.W., C.R.S.

Results Plasma troponin concerns access in T.F.M., S.B., and the Institute for Clinical Community and Laboratories for Clinical 0.05 to 0.19 ng/mt, in 170 patients to route

Chemistry and Laboratory Medicine (D.P.

Uning the validation phase, 39% of patien

Chemistry and Laboratory Medicine (D.P.

N.J., K.I.L.L. University Medicine (D.P.) During the validation phase, 39% of patter

Outing the validation phase, 39% of patter

N.J., K.J.L., University Medicine (D.P.

to 0.19 ng/mL were dead or had recurrent

Johannes Gutenbau, L.

Gutenbau, L.

Gutenbau, L. Johannes Gutenberg University, Mainz-the Department of Internal Medicine. mL or more (P=.007), respectively. Durin Federal Armed Forces Hospital, Koblena nostic threshold to 0.05 ng/mL was assoc (C.8); and the Department of Cardiology

with major reductions in morbidity.

whether further reductions in the threshold of def will improve clinical outcomes in patients with se Objective To determine whether lowering infarction (MI) with a sensitive troponin assa

Results Plasma troponin concentrations will M.S.E. PSW., RBS. EL., S.G.Z., FR.

thom 99% (0.21%) methods extend (0.41%) the conclusions in patients with suspect (0.61%) and format (0.41%) format (0.61%) for nam: Heart Shidy, Framingham MA (R.R.S.)) the Department of Medicine. gram one Women's Mespeal and arrang Medical School — both in Boe on (E.L.); and)[4556834 Unite 525, Tacal

The NEW ENGLAND JOUENAL of MEDICINE

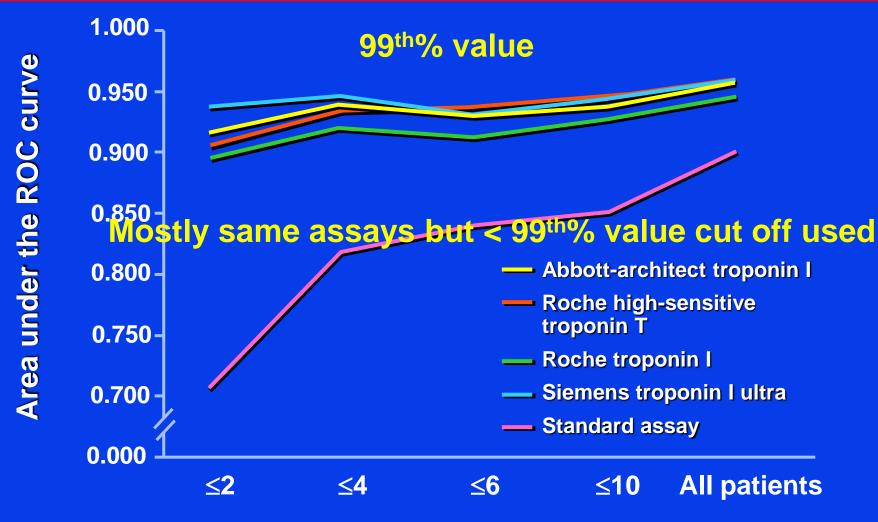
ORIGINAL ARTICLE

Sensitive Troponin I Assay in Early Diagnosis of Acute Myocardial Infarction

Till Keller, M.D., Tanja Zeller, Ph.D., Dirk Peetz, M.D., Stergios Tzikas, M.D., Alexander Roth, Ph.D., Ewa Czyz, M.D., Christoph Bickel, M.D., Stephan Baldus, M.D., Ascan Warnholtz, M.D., Meike Frohlich, M.D. Christoph R, Sinning, M.D., Medea S, Eleftheriadis, Philipp S, Wild, M.D. Renate B. Schnabel, M.D., Edith Lubos, M.D., Nicole Jachmann, Ph.D., Sabine Genth-Zotz, M.D., Felix Post, M.D., Viviane Nicaud, M.A. Laurence Tiret, Ph.D., Karl J. Lackner, M.D., Thomas F. Munzel, M.D. and Stefan Blankenberg, M.D.

ABSTRACT

BACKGROUND

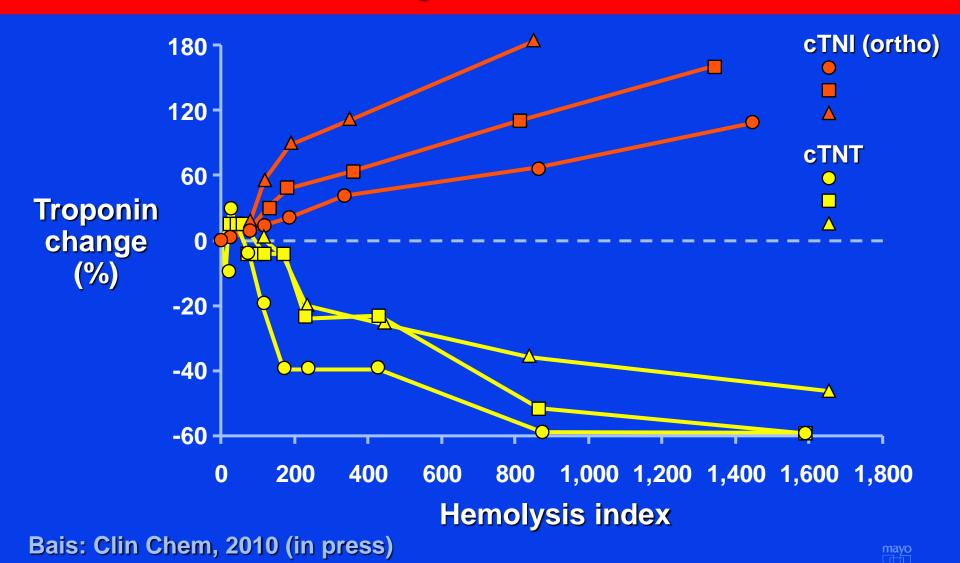

Cardiac troponin testing is central to the diagnosis of acute myocardial infarction. We evaluated a sensitive troponin I assay for the early diagnosis and risk stratification

In a multicenter study, we determined levels of troponin I as assessed by a sensitive assay, troponin T, and traditional myocardial necrosis markers in 1818 consecutive patients with suspected acute myocardial infarction, on admission and 3 hours and

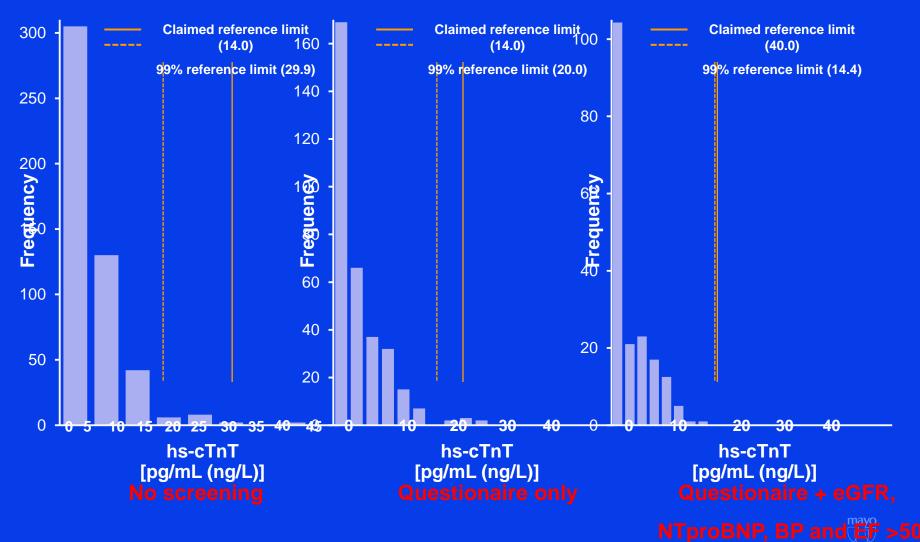
For samples obtained on admission, the diagnostic accuracy was highest with the sensitive proponin I assay (area under the receiver-operating-characteristic curve (AUCJ, 0.96), as compared with the troponin T assay (AUC, 0.85) and traditional myocardial necrosis markers. With the use of the sensitive troponin I assay found? value, 0.04 mg per millilater) on admission, the clinical sensitivity was 90.7%, and the specificity was 00.7%. The diagnostic accuracy was virtually identical in based

Accuracy by Time of Admission

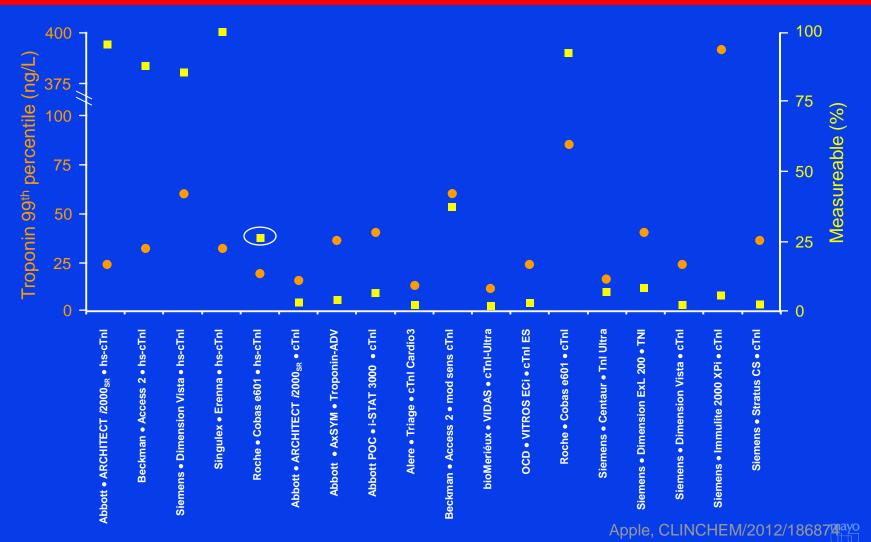
Hours since onset of symptoms



Use the proper definition for high sensitivity


Be aware that hs assays will be more sensitive to pre - analytical and analytical confounds

Effects of Hemolysis on hscTnT Values



Reference Range for cTn Assays (hscTnT – Roche)

Collinson et al: Clinical Chemistry 58:1, 219-225 (2012)

99th Percentile Values and Percent of Patients Detected by Various Cardiac Troponin Assays

Clinical Implications of a Recent Adjustment to the High- Sensitivity Cardiac Troponin T Assay: User Beware					
To the Editor:					
Roche Diagnostics recently issued a technical bulletin calling for an adjustment to the calibration curve for the Elecsys Troponin T hs and Elecsys Troponin T hs STAT assays. Although this bulletin was disseminated widely in some countries, it was less widely distributed in others. The Roche highsensitivity (hs) assays are in clinical use worldwide except within the US, where they are used for re-					
search but have not yet been					

sults will be seen among patients presenting for emergency care? Third, how does this change affect findings from the hundreds of published studies that have used both the 99th percentile value and δ changes over time to examine diagnostic accuracy, and how does it change the findings for risk stratification of acute coronary syndrome patients and apparently healthy patients? Fourth, what mechanisms are in place to allevi-

ate customers' concerns that simi-

lar product adjustments for this hs

assay that have substantial down-

99th percentile value of 14 ng/L

that has consistently been reported

in the literature? Second, what per-

centage increase in detectable re-

(4). In addition, the original diagnostic study (1) found that the hs assay for cardiac troponin T did not detect more myocardial infarctions than conventional assays (5). Was this decrease due to the change now reported by Roche, or did some other change occur very early in the assay? We believe that these findings have major implications for patient care. We urge that in addition to correcting the lot issues it has defined, Roche reevaluate (at a minimum) subsets of the key re-

search sample sets to ensure that:

(a) there is no need to recalculate

(3). This percentage fell even fur-

ther, with only 25% above this

limit in a community-based study

Use the proper definition for high sensitivity

Be aware that hs assays will be more sensitive to pre -analytical and analytical confounds

Use whole numbers and gender specific cut off values

DEMOGRAPHIC CHARACTERISTICS, CARDIOVASCULAR RISK FACTORS, AND CARDIAC PHENOTYPES ACROSS INCREASING CATEGORIES OF CARDIAC TROPONIN T LEVEL

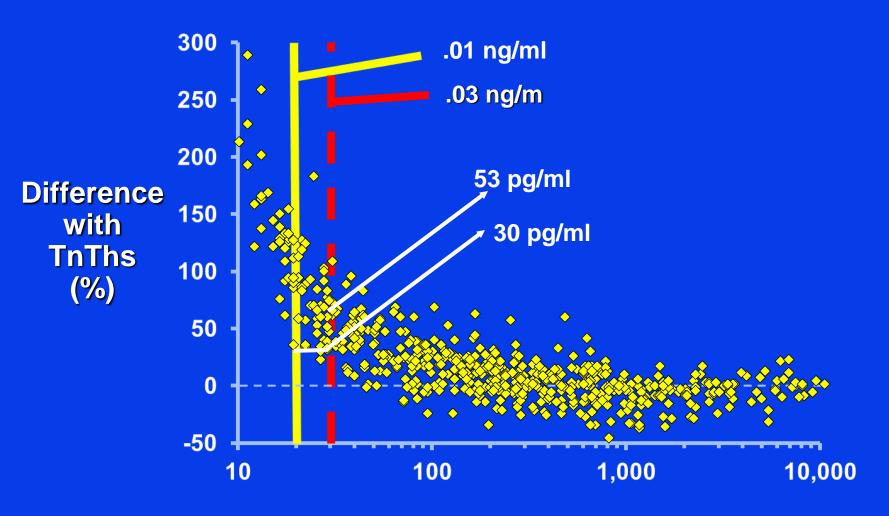
	cTnT Category, ng/mLa					
	<0.003	<0.003 0.003-0.00440 0.441-0.00657 0.0066-<0.0014 ≥ 0.0014				
Variable	(n = 2589)	(n = 278)	(n = 279)	(n = 278)	(n = 122)	Trend
cTnT ≥ 0.01 ng/mL with standard assay, No/total (%)	0/2589	0/278	0/279	1/277 (0.4)	40/120 (33.3)	<.001
Age, median (QR), y	41 (35-49)	47 (39-55)	49 (41-55)	52 (45-58)	53 (44-68)	<.001
Men, No./total, (%)	895/2589 (34.6)	175/278 (62.9)	196/279 (70.3)	214/278 (77.0)	85/122 (69.7)	<.001
Race/ethnicity, No./total (%)						
Black	1229/2589	150/278	173/279	182/278	94/122	<.001
	(47.5)	(54.0)	(62.0)	(65.5)	(77.0)	
White	794/2589	88/278	78/279	61/278	21/122	<.001
	(30.7)	(31.7)	(28.0)	(21.9)	(17.2)	
Hispanic	500/2589	37/278	27/279	30/278	7/122	<.001
	(19.3)	(13.3)	(9.7)	(10.8)	(5.7)	
Other	66/2589	3/278	1/279	5/278	0/278	.008
	(2.5)	(13.7)	(0.4)	(1.8)		

99th Percentile Values in Normal Subjects Measured By Contemporary, Sensitive and High-Sensitivity Cardiac Troponin Assays

	99 th Percentile	Percent Measurable	Male 99 th Percentile	Female 99 th Percentile	LoD	
High Sensitivity	ng/L	>LoD	ng/L	ng/L	ng/L	
Abbott ARCHITECT	23.4	95.0		15.1	1.2	524
Beckman Access	32.2	87.4		23.1	3.0	524
Siemens Dimension Vista	57.5	85.3		42.3	0.5	503
Singulex Erenna	31.4	100.0		30.3	0.009	523
Roche cTnT	14.5	25.4		12.9	5.0	523

Apple et al: CLINCHEM/2012/186874

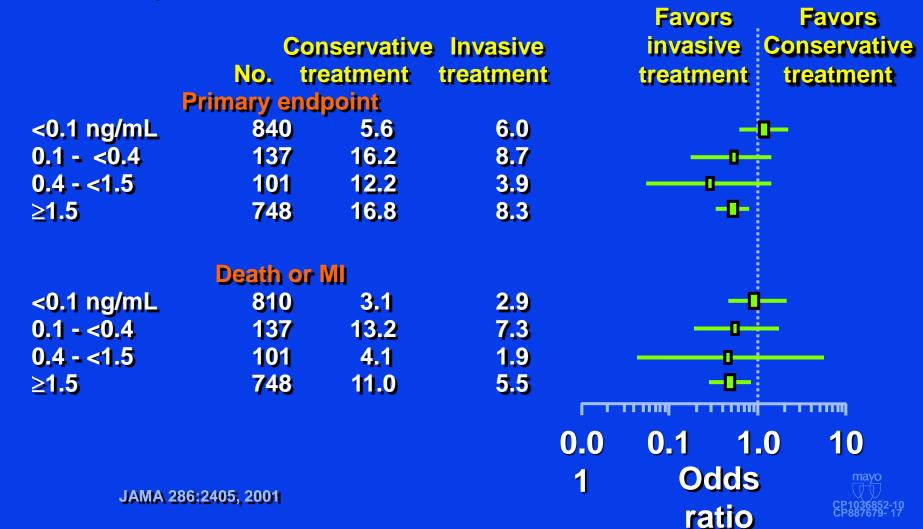
Use the proper definition for high sensitivity


Be aware that hs assays will be more sensitive to pre -analytical and analytical confounds

Use whole numbers and gender specific cut off values

Use anchor values from previous assays to gauge differences

Low-End Comparability



Troponin T, Elecsys® 4th gen (pg/mL)

TACTICS (TIMI 18) Subgroups

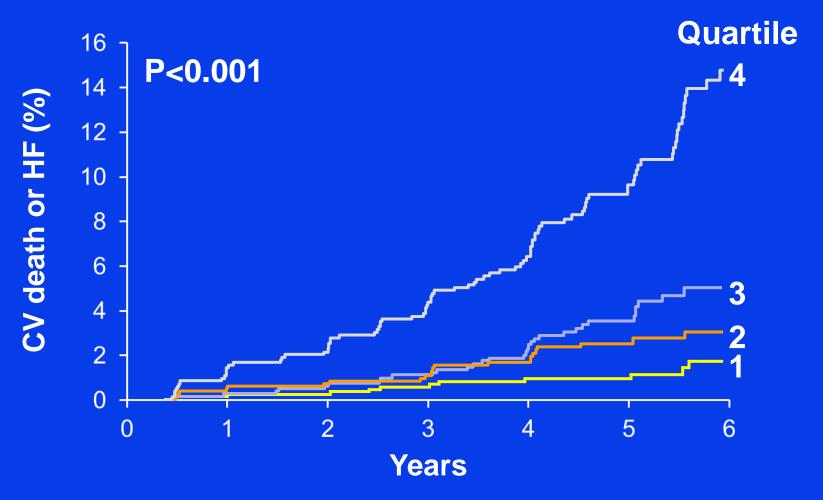
Cardiae troponin T

Use the proper definition for high sensitivity

Be aware that hs assays will be more sensitive to pre -analytical and analytical confounds

Use whole numbers and gender specific cut off values

Use anchor values from previous assays to gauge differences


Recognize there will be more elevations

Prevalence of Detectable cTnT & levels > 99th Percentile URL

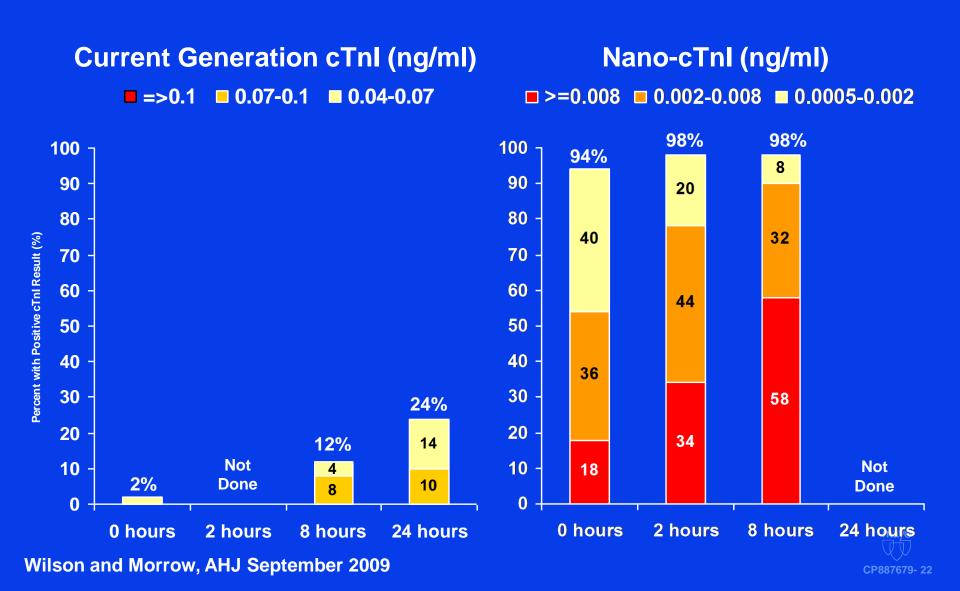
			≥ 0.003		
Group	Sample Size, No.	No. (%)	Sample Weight-Adjusted Prevalence, % (95% CI)	No. (%)	Sample Weight-Adjusted Prevalence, 95% CI)
Overall population	3546	957 (27.0)	25.0 (22.7 – 27.4)	122 (3.4)	2.0 (1.5 – 2.6)
Restricted population Without CHD	3428	891 (26.0)	24.2 (21.8 – 26.5)	103 (3.0)	1.8 (1.2 – 2.4)
Without cardiovascular disease	3277	813 (24.8)	23.7 (21.3 – 26.1)	82 (2.5)	1.9 (1.0 – 2.0)
Without cardiovascular disease or CKD ^a	3222	773 (24.0)	23.1 (20.7 – 25.5)	65 (2.3)	1.2 (0.8 – 1.7)
Without cardiovascular disease, CKD, subclinical heart disease, diabetes, or hypertension ^b	2554	510 (20.0)	19.3 (16.8 – 21.8)	43 (1.7)	1.1 (0.6 – 1.7)

Risk of CV Death or Heart Failure by hscTnl (Abbott) in PEACE

Use the proper definition for high sensitivity

Be aware that hs assays will be more sensitive to pre -analytical and analytical confounds

Use whole numbers and gender specific cut off values


Use anchor values from previous assays to gauge differences

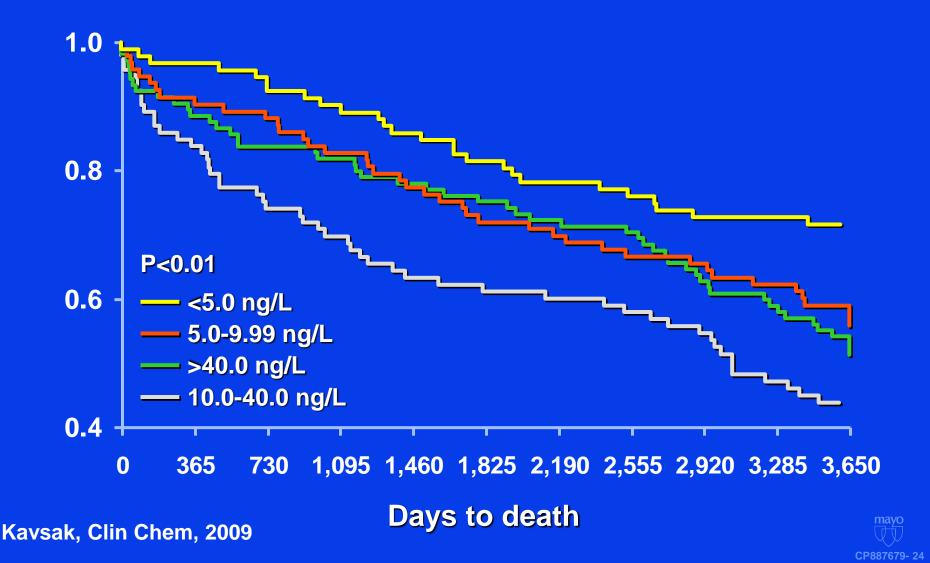
Recognize there will be more elevations

Recognize that more patients will be diagnosed with AMI

Detection of cTnl in Patients with Unstable Angina

Differences with hs-cTnl in Patients Presenting Early with Chest Discomfort

Change criteria	Myocardial injury presenta	Myocardial injury absenta
Earliest pair (median interval 1 h; IQR 1-3	h)b	
hs-cTnl change positive	88 [44.0 ng/L (19.0-153)]	75 [15.4 ng/L (6.3-34.7)]
hs-cTnl change negative	20 [13.4 ng/L (5.9-54.5)]	107 [5.4 ng/L (4.0-9.7)]
AccuTnl change positive	67 [0.06 μg/L 0.02-0.21]	7 [0.00 μg/L (0.00-0.01)]
AccuTnl change negative	41 [0.05 μg/L 0.02-0.16]	175 [0.00 μg/L (0.00-0.01)]
Any specimen pair (median 4 specimens	/subject; IQR 2-6) ^c	
hs-cTnl change positive	107 [323 ng/L (77.0-4099)]	104 [31.9 ng/L (15.7-101)]
hs-cTnl change negative	1	78 [6.2 ng/L (4.8-9.4)]
AccuTnl change positive	95 [0.55 μg/L (0.11-5.5)]	13 [0.03 μg/L (0.03-0.04)]
AccuTnl change negative	13 [0.09 μg/L 0.05-0.18]	169 [0.01 μg/L (0.01-0.02)]



^aPeak AccuTnI concentration was used to define if myocardial injury was present (>99th percentile) or absent (≤99th percentile)

bData are n [median cTnl concentration at presentation (IQR)]

^cData are n [median cTnl concentration at peak (IQR)] Kavsak et al: Clin Chem 55:573, 2009

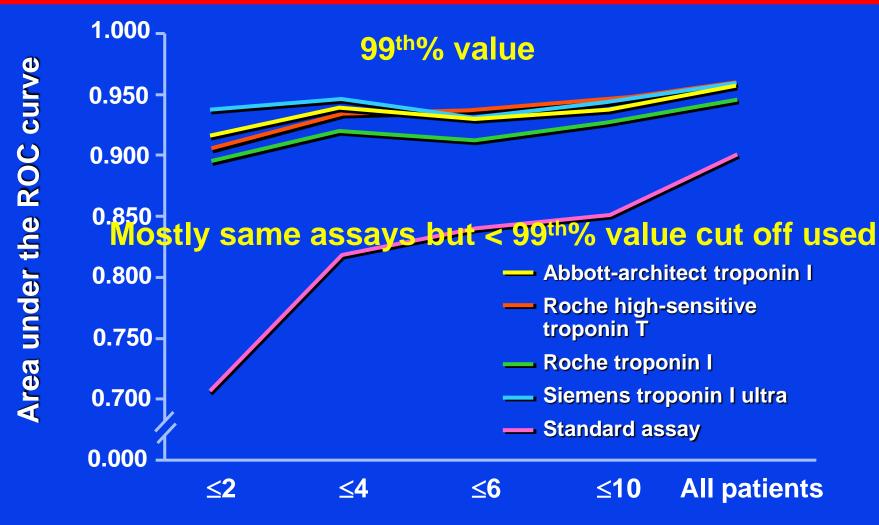
Survival by hscTnl Values - Preface

Use the proper definition for high sensitivity

Be aware that hs assays will be more sensitive to pre -analytical and analytical confounds

Use whole numbers and gender specific cut off values

Use anchor values from previous assays to gauge differences


Recognize there will be more elevations

Recognize that more patients will be diagnosed with AMI

Recognize that the time to ruling in, despite the hype may not be shortened

Accuracy by Time of Admission

Hours since onset of symptoms

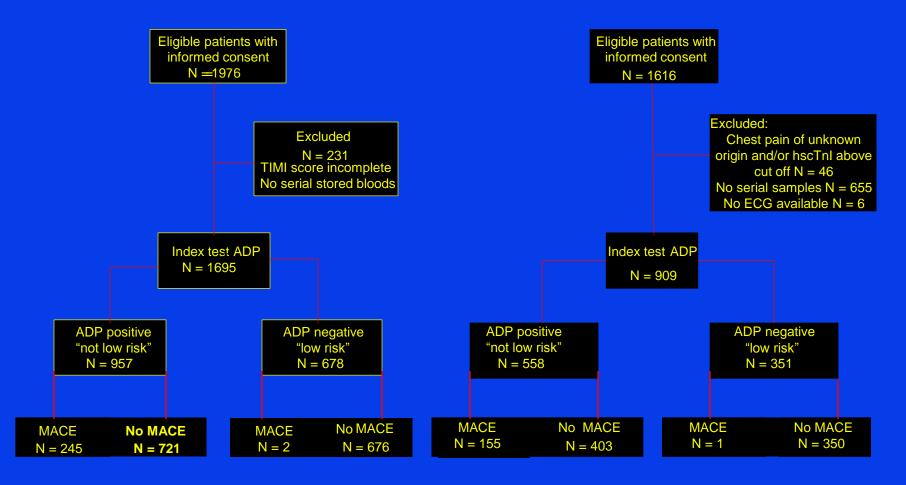
Time to Diagnosis with hscTnT Based on The Gold Standard

- Use the proper definition for high sensitivity
- Be aware that hs assays will be more sensitive to pre -analytical and analytical confounds
- Use whole numbers and gender specific cut off values
- Use anchor values from previous assays to gauge differences
- Recognize there will be more elevations
- Recognize that more patients will be diagnosed with AMI
- Recognize that the time to rule in will be shortened for many but, despite the hype may not be shortened overall
- New strategies will reduce the time to rule out AMI in many patients.

DIAGNOSTIC PERFORMANCE OF THREE MODELS INCORPORATING hsTnT AND ECG FINDINGS FOR EARLY EXCLUSION OF AMI

Model	Sensitivity	Specificity	PPV	NPV
	(95% CI)	(95% CI)	(95%CI)	(95% CI)
A	100.0	30.1	23.7	100.0
	(97.1 – 100.0)	(26.3 – 34.0)	(20.2 – 27.6)	(97.9 – 100.0)
В	95.2	69.4	40.4	98.5
	(89.9 – 98.2)	(65.5 – 73.2)	(34.8 – 46.2)	(96.8 – 99.5)
С	100.0	66.4	30.3	100.0
	(97.1 – 100.0)	(63.1 – 69.5)	(25.9 – 35.0)	(99.4 – 100.0)

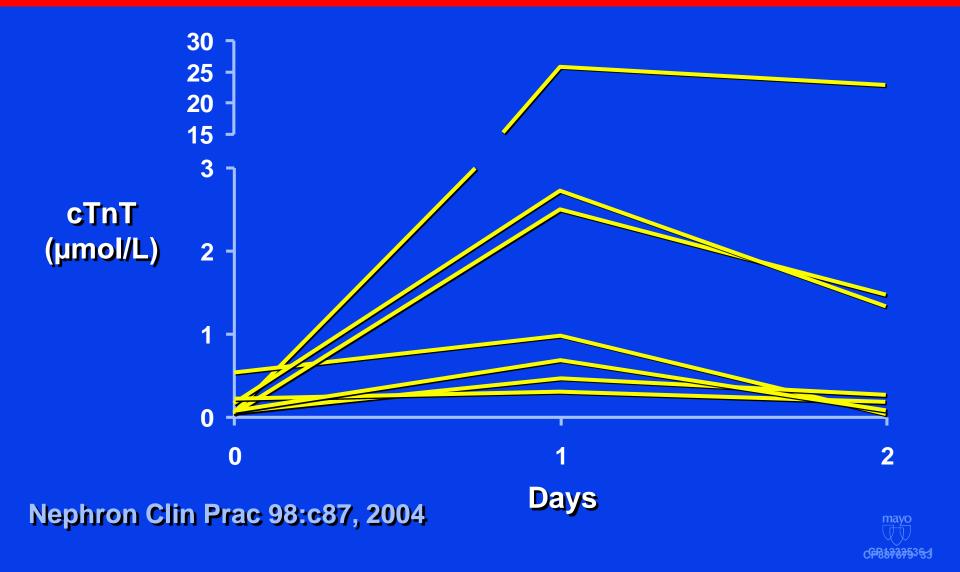
Model A: hsTnT <3 ng/L and no ECG ischaemia; Model B: hsTnT <14 ng/L and no ECG ischaemia;


Model C: (hsTnT <3 ng/L and no ECG ischaemia) OR (hsTnT <14 ng/L and no ECG ischaemia and

symptom onset <6h)

Reference: Body

Accelerated Diagnostic Protocols with hscTnl (Abbott) – 30 Day MACE Rates ADAPT APACE


- Use the proper definition for high sensitivity
- Be aware that hs assays will be more sensitive to pre -analytical and analytical confounds
- Use whole numbers and gender specific cut off values
- Use anchor values from previous assays to gauge differences
- Recognize there will be more elevations
- Recognize that more patients will be diagnosed with AMI
- Recognize that the time to rule in will be shortened for many but, despite the hype may not be shortened overall
- New strategies will reduce the time to rule out AMI in many patients
- Use changing values to diagnose AMI

Criteria for Acute Myocardial Infarction

- Detection of a <u>rise and/or fall</u> of cardiac biomarker values (preferably cardiac troponin (cTn)) with at least one value above the 99th percentile upper reference limit (URL) and with at least one of the following:
- Ischaemic symptoms
- ECG changes of new ischaemia (new ST-T changes or new LBBB)
- Development of pathologic Q waves in the ECG
- Imaging evidence of new loss of viable myocardium or new regional wall motion abnormality
- Identification of an intracoronary thrombus by angiography or autopsy

Changes in cTnT in Dialysis Patients with ACS

Determining Assay Values are Different

BUN (Bld Urea Nitr	8-24 mg/dL	48 *	23 Jan 08		10 A
Chloride	100-108 mmol/L	110 *	23 Jan 08		3H Delta57001-ROCLIS
Bicarbonate, P/S,	22-29 mmol/L	22	23 Jan 08		23 Jan 2008 15:38
Anion Gap	7-15	10	23 Jan 08		Value: Not Sig
☐ CARDIAC CHEMIS					Facility: MCR
Troponin T, S	<0.01 ng/mL	0.11 *	23 Jan 08	0.11 *	Reference Range: ng/mL
3H Troponin T, S	<0.01 ng/mL	0.12 *	23 Jan 08	0.12 *	Comment:
6H Troponin T, S	<0.01 ng/mL	0.15 *	23 Jan 08	0.15 *	No significant delta observed
3H Delta	ng/mL	Not Sig @	23 Jan 08	Not Sig @	Delta=.01
6H Delta	ng/mL	Sig Delta @	23 Jan 08	Sig Delta @	Entry User: INTERFACE USER, INTE Accession Number: G9086672937
⊒ LIPIDS 63 AG					Performing Loc: DEPT LAB MED PATH
☐ LIPIDS 1 AG					Terrorming noon part has the Trin
LDL Subfractionati	100-200 g/dL	. @b0	23 Jan 08		
Beta LDL Choleste	100-200 g/dL	.@b1	23 Jan 08		
Percentile Rank	100-200 a/dl	1.01@b3	23 Jan 08		TOT WINTED WITH

Short-Term Analytical and Biological Variation by hs-cTnl Assays

	Abbott ^a	Beckmana	Roche (E170)b	Siemensa	Singulexc
CV-A (%) ^d	13.8	14.5	7.8	13.0	8.3
CV-I (%)	15.2	6.1	15.0	12.9	9.7
CV-G (%)	70.5	34.8	NA	12.3	57.0
Index of individuality	0.22	0.46	NA	0.11	0.21
RCV (%)e	NA	NA	47.0	NA	NA
RCV increase (%) ^f					
RCV decrease (%) ^f	-40.9	-38.9	NA	-36.5	-32.0
Within-individual mean (ng/L)	3.5	4.9	NA	5.5	2.8

^a Apple et al (38); ^b Vasile et al (36); ^c Wu et al (35)

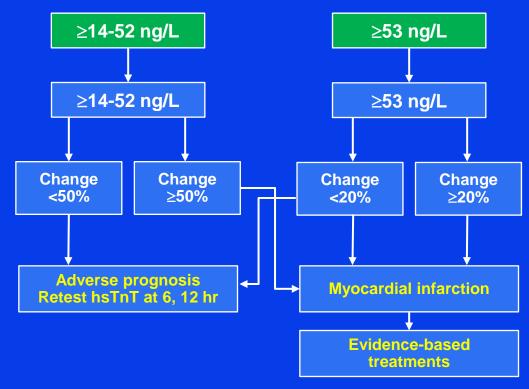
f RCV increase and decrease percentages refer to nonparametric data and are log-transformed Apple et al: Clin Chem 58:1, 2012

d CV-A, analytical CV; CV-I, within-individual CV; CV-G, between individual CV; NA, not available; RCV, relative change value; e REC percentage applies to parametric data

PERCENTILES OF CHANGE IN CTNT CONCENTRATION IN CORONARY CARE UNIT PATIENTS WITHOUT MI

	Relativ	ve change, %	. Absolu	<u>.</u>	
Diagnosis	50 th (95% CI)	97.5 th (95% CI)	50 th (95% CI)	97.5 th (95% CI)	na
All diagnoses	10 (10 - 11)	59 (48 - 71)	1.6 (1.4 - 1.7)	14.1 (10.1 - 18)	866
Heart failure	10 (9 - 12)	51 (38 - 65)	3.1 (2.5 - 3.7)	30 (17.3 - 42.5)	204
Stable angina pectoris	10 (9 -1 2)	67 (34 - 99)	1.4 (1.2 - 1.6)	13.6 (9.4 - 17.8)	343
Atrial fibrillation	9 (6 - 12)	66 (29 - 104)	1.1 (0.8 - 1.4)	9.1 (6.4 - 11.8)	86
Noncardiac chest pain	12 (10 - 15)	64 (46 - 82)	1.2 (1 - 1.5)	7.5 (5.9 0- 9.1)	229

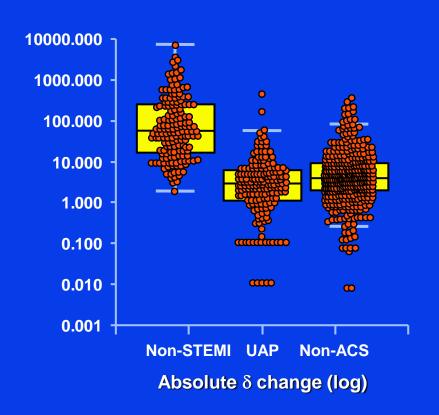
^a Number of cTnT measurements included in calculations.

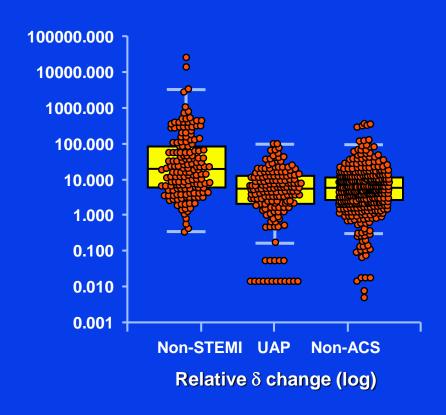

b NA, not applicable, because the absolute change in cTnT concentration differed among diagnosis groups (heart failure vs atrial fibrillation, stable angina pectoris, and noncardiac chest pain, all P <0.02, and atrial fibrillation vs stable angina pectoris, P = 0.017, for difference in medians.

Use of High Sensitivity Troponin T to Diagnose Myocardial Infarction

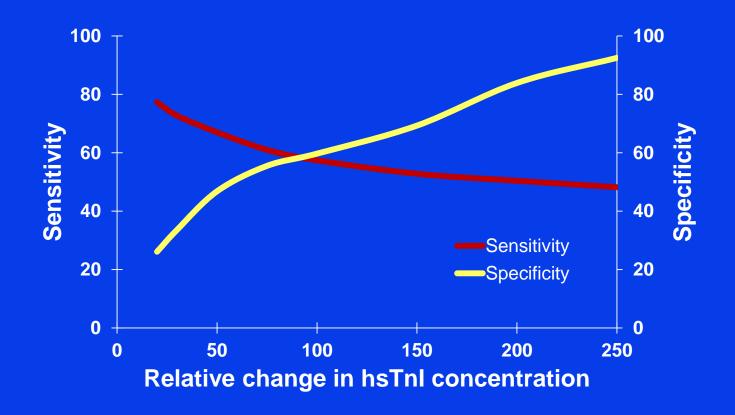
Clinical setting consistent with myocardial ischemia

<14 ng/L Retest hsTnT 3 hours after symptom onset or if timing of symptom onset is unclear at 6 hours after presentation ≤14 ng/L rules out MI with >90% probability If ≥14 ng/L then proceed to middle part of algorithm

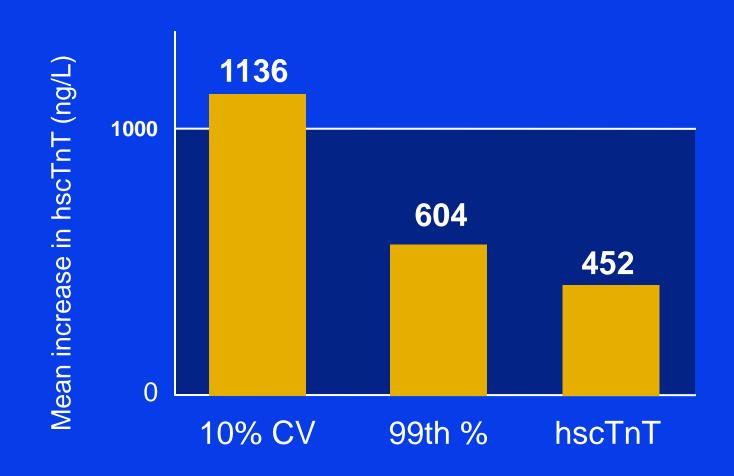

Baseline



Absolute and Relative Changes in Patients with AMI, Unstable Angina and "Non-Cardiac Chest Pain"



Mueller et al: Clinical Chemistry 58:1 (2011)


Defining the Optimal Delta: The Tension Between Sensitivity and Specificity

Data from Keller et al (JAMA 2012)

Delta for the Diagnosis of AMI with hscTnT Based on The Gold Standard (T0-T3hr)

Delta Guidance

MUST USE FIXED TIMING

Near 99th% URL value

The greater the change, the more likely AMI

The lesser the change, the less likely AMI

Percentages and absolute values may provide similar information

At higher levels

Absolute values may be better

Delta Guidance

MUST USE FIXED TIMING

Near 99th% URL value

The greater the change, the more likely AMI

The lesser the change, the less likely AMI

Percentages and absolute values may provide similar information

At higher levels

Absolute values may be better

Avoid

Extrapolating the data from one assay to another assay

The idea that release is continuous so that one can use a one or 2 hour delta by dividing by the delta found at 5 or 6 hours.

- Use the proper definition for high sensitivity
- Be aware that hs assays will be more sensitive to pre -analytical and analytical confounds
- Use whole numbers and gender specific cut off values
- Use anchor values from previous assays to gauge differences
- Recognize there will be more elevations
- Recognize that more patients will be diagnosed with AMI
- Recognize that the time to rule in will be shortened for many but, despite the hype may not be shortened overall
- New strategies will reduce the time to rule out AMI in many patients
- **Use changing values to diagnose AMI**
- Remember it is the clinician who makes the diagnosis of AMI and not the laboratory results

It is not the Data but How You Intepret it that is Important

Mike Twohy/Dist. by UFS, Inc.

