Atrial fibrillation during ACS

Moti Haim, MD Cardiac Electrophysiology Meir Medical Center

Disclosures

- Medtronic
- Boston Scientific
- Pfizer
- Rafa
- Taro
- Bayer
- Sanofi Aventis

AF and ACS

- Epidemiology of AF in ACS
- Outcome: Acute and Long-Term
- Association with Stroke
- Management: Acute and Long-Term
- Anti-Coagulation in the ACS patient

Epidemiology

Long-term prognosis of patients with paroxysmal atrial fibrillation complicating acute myocardial infarction

S. BEHAR, Z. ZAHAVI, U. GOLDBOURT, H. REICHER-REISS AND THE SPRINT SUDY GROUP (see Appendix)

SPRINT Coordinating Center, Neufeld Cardiac Research Institute, Sheba Medical Center, Tel Hashomer 52621, Israel

		$\begin{array}{c} \mathbf{PAF} \\ (\mathbf{n} = 577) \end{array}$		Others $(n = 5075)$	
	no.	%	no.	%	
Males	411	71·2	3777	74· 4	NS
Age (mean)	68·3	vears	62.2	years	<0.000
Past history				• • •	210
MI	148	25.6	1223	24.1	NS
Hypertension	250	43-3	1998	39-4	NS
MI location					
Anterior	275	47-7	2190	43.2	< 0.01
Inferior	217	37.6	1999	39-4	NS
non Q MI	35	6-1	400	7.9	NS
Lateral	21	3.6	236	4∙6	NS
Hospital complications					
CHF	405	70-2	1896	37 4	< 0.000
VF	70	12-1	328	65	< 0.000
VT	120	20.8	852	16-8	<0.01
AV Block 2° or 3°	86	14 9	540	1 0-6	<0.001
Pericarditis	89	15.4	400	7-9	< 0.0003
Systemic emboli	10	1.7	30	0.6	< 0.001
Enzymes (\geq 4 times upper :	normal limit)				
СРК	319	55-3	2682	52-8	NS
SGOT	307	53·2	1985	39-1	< 0.0001
LDH	113	19.6	567	11-2	< 0 0001

Table 2 Characteristics of patients with paroxysmal atrial fibrillation complicating acute myocardial infarction

Significance of Paroxysmal Atrial Fibrillation Complicating Acute Myocardial Infarction in the Thrombolytic Era

Michael Eldar, MD; Menachem Canetti, MD; Zeev Rotstein, MD; Valentina Boyko, MSc; Shmuel Gottlieb, MD; Elieser Kaplinsky, MD; Solomon Behar, MD; for the SPRINT and Thrombolytic Survey Groups

TABLE 1. Characteristics of 2866 TE Patients in a

Comparison of Patients	Comparison of Patients With $(+)$ and Without $(-)$ PAF						
	PAF+ (n=255), No. (%)	PAF- (n=2611), No. (%)	Р				
Age, mean \pm SD y	70±11	62±12	<.001				
Age≥70 y. n (%)	143 (56)	821 (31)	.001				
Female, n (%)	95 (37)	647 (25)	.001				
Diabetes mellitus, n (%)	82 (32)	654 (25)	.01				
Past AMI, n (%)	84 (33)	704 (27)	.04				
Hypertension, n (%)	117 (46)	1014 (39)	.03				
Anterior AMI, n (%)	120 (47)	1189 (46)	NS				
CHF on admission, n (%)	138 (55)	645 (26)	.001				
Angina pectoris, n (%)	97 (38)	869 (33)	NS				
Stroke in CCU, n (%)	10 (3.9)	16 (0.6)	.001				

Circulation. 1998;97:965-970

Incidence and prognostic significance of atrial fibrillation in acute myocardial infarction: the GISSI-3 data

Characteristic Without AF (n=16 363) With AF (n=1386) p Value Women 21.1< 0.0001* 27.7Age >70 years 24.846.7 < 0.0001* Time from symptom onset (hours) < 3 58.4 56.6 > 3-6 NS† 20.921.9> 6-12 12.3 13.0 > 12-248.4 8.5 Killip class at randomisation 86.0 74.3 1 2 12.723.7 $< 0.0001 \dagger$ 3 0.71.9 Site of infarction Anterior 29.0 27.8Infero-posterior 34.2 33.0 Multiple location 3.5 3.2 < 0.00001* Non-O wave 19.6 16.8 Undefined 9.7 15.1 Not reported 3.9 4.1 Heart rate at randomisation (beats/min) < 6011.5 9.3 $< 0.00001 \pm$ 60 - 7950.938.780-100 33.3 39.2 > 1004.212.8Systolic blood pressure at randomisation (mm Hg)

Table 1 Clinical characteristics of patients with or without atrial fibrillation (AF)

100–120 121–150 > 150	39.5 46.2 14.4	36.7 46.8 16.6	< 0.03†
History			
Previous MI	13.2	15.4	< 0.05*
Previous angina	34.2	34.8	NS*
Treated hypertension	28.9	36.6	< 0.001*
Diabetes	15.2	18.5	< 0.01*

Prognostic Significance of Atrial Fibrillation/Atrial Flutter in Patients With Acute Myocardial Infarction **Treated With Percutaneous Coronary Intervention**

Kunihiro Kinjo, MD, Hiroshi Sato, MD, PhD, Hideyuki Sato, MD, Yozo Ohnishi, MD, Eiji Hishida, MD, Daisaku Nakatani, MD, Hiroya Mizuno, MD, Masatake Fukunami, MD, Yukihiro Koretsune, MD, Hiroshi Takeda, MD, and Masatsugu Hori, MD, on behalf of the Osaka Acute Coronary Insufficiency Study (OACIS) Group

Actie Mytocaraidi inidiciion			
Characteristic	Chi-square*	OR (95% CI)	p Value
Age	39.6	1.06 (1.04–1.07)	<0.001
Men	8.36	1.89 (1.23–2.90)	0.004
Diabetes mellitus	0.22	1.09 (0.77-1.53)	0.642
Systemic hypertension	0.04	1.04 (0.74–1.44)	0.841
Current smoker	0.92	0.84 (0.60-1.19)	0.339
Prior myocardial infarction	3.36	1.49 (0.97–2.29)	0.067
Prior cerebrovascular disease	2.81	1.55 (0.93-2.58)	0.094
Systolic blood pressure <100 mm Hg	2.51	1.43 (0.92–2.24)	0.113
Heart rate \geq 100 beats/min	24.5	3.00 (1.94–4.64)	<0.001
Killip class IV	4.68	2.06 (1.07–3.94)	0.030
Time to presentation >12 h	1.94	0.68 (0.40–1.17)	0.163
Left anterior descending coronary	0.64	0.87 (0.62–1.22)	0.423
artery disease			
TIMI flow grade 3	0.09	0.94 (0.62-1.42)	0.766
Multivessel disease	0.01	0.99 (0.76-1.28)	0.929
Stent use	0.01	0.98 (0.71–1.36)	0.921
*Wald's chi-square value.			

TABLE 3 Independent Predictors of Atrial Fibrillation and/or Atrial Flutter After Acute Myocardial Infarction

CI = confidence interval; OR = odds ratio; other abbreviation as in Table 2.

Atrial fibrillation in acute myocardial infarction: a systematic review of the incidence, clinical features and prognostic implications

Joern Schmitt^{1†}, Gabor Duray^{1†}, Bernard J. Gersh², and Stefan H. Hohnloser^{1*}

Table 2 Incidence and predictors of AF after AMI

Author/Study	Publication year	AF—incidence after AMI (%)	Predictors of AF in AMI	Treatment modality of AMI
Behar/Sprint Prognosis ²⁰	1992	9.9	Age >70 years (P < 0.01), female gender (P < 0.01), diabetes mellitus (P = 0.01), CHF on admission (P < 0.01)	n.a.
Madias ³⁷	1996	11.2	Higher age (OR 1.08, 95% CI 1.02-1.06), left ventricular hypertrophy (OR 2.30, 95% CI 1.65-2.96)	n.a.
Crenshaw/GUSTO I ¹⁹	1997	7.9	Older age, increased heart ate, higher Killip class, lower systolic blood pressure	Thrombolysis
Eldar/Sprint ¹⁸	1998	8.9	Age >70 years ($P < 0.01$), female gender ($P < 0.01$), diabetes mellitus ($P = 0.01$), CHF on admission ($P < 0.01$)	Thrombolysis vs. no reperfusion Rx
Pedersen/TRACE ³³	1999	15	Age, female gender, hypertension, diabetes, prior CHF, smoking, no thrombolysis	80% thrombolysis
Rathore ¹⁰	2000	11.3	Age, female gender, hypertension, diabetes, prior AMI or CHF, higher Killip at enrolment	n.a.
Wong/GUSTO III ¹⁷	2000	6	Higher age, female gender, hypertension, diabetes mellitus, higher Killip class, CHF	Thrombolysis
Pizzetti/GISSI III ²⁸	2001	6.1	Female gender (P < 0.001), age >70 years (P < 0.001), Killip class >2 (P < 0.001), higher heart rate (P < 0.001), hypertension (P < 0.001), diabetes (P < 0.01)	Thrombolysis
Goldberg ²¹	2002	13.2	Higher age ($P < 0.001$), hypertension ($P < 0.05$), heart failure ($P < 0.001$)	n.a.
Kinjo/OACIS ²²	2003	7.7	Age (OR 1.06, 95% CI 1.04–1.07), male gender (OR 1.89, 95% CI 1.23–2.90), heart rate ≥100/min (OR 3.0, 95% CI 1.94–4.64), Killip class IV (OR 2.06, 95% CI 1.07–3.94)	PCI
Lehto/OPTIMAAL ³⁴	2005	7.2	Higher age (per 10 years) (HR 1.66, 95% CI 1.48–1.86), male sex (OR 1.65, 95% CI 1.28–2.12), Killip class III (OR 1.92, 95% CI 1.36–2.72)	n.a.
Stenestrand/RIKS-HIA ⁴⁶	2005	1.7	n.a.	n.a.
McMurray/CAPRICORN ³⁵	2005	2.7-5.5	n.a.	45% thrombolysis or PCI
Laurent/RICO ⁴¹	2005	7.6	Higher age ($P < 0.001$), Killip class >2 ($P = 0.01$), higher heart rate ($P < 0.001$)	n.a.
Kober/VALIANT ³⁶	2006	12.3	Higher age, prior HF, prior angina, prior MI	n.a.
Siu ⁴⁰	2007	13.7	Higher age ($P < 0.01$), female gender $P = 0.02$)	70% thrombolysis and 30% PCI

AF, atrial fibrillation; AMI, acute myocardial infarction.

Trends in Atrial Fibrillation Complicating Acute Myocardial Infarction

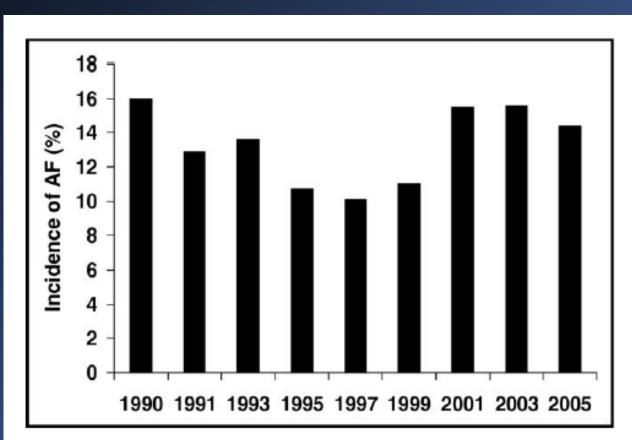


Figure 1. Trends in incidence rates of AF in patients hospitalized with AMI in the Worcester Heart Attack Study.

Trends in Atrial Fibrillation Complicating Acute Myocardial Infarction

Table 2

Crude and multivariable adjusted odds of developing atrial fibrillation during hospitalization for acute myocardial infarction: Worcester Heart Attack Study

Period	Patients	Crude OR	95% CI	Adjusted OR*	95% CI
1990 [†]	701	1.0	_	1.0	_
1991	776	0.78	0.58-1.04	0.76	0.56-1.04
1993	873	0.83	0.62-1.10	0.91	0.67-1.23
1995	876	0.63	0.47-0.85	0.69	0.50-0.95
1997	952	0.59	0.44-0.79	0.67	0.48-0.92
1999	908	0.65	0.48-0.87	0.75	0.55-1.03
2001	1,065	0.96	0.74-1.26	1.08	0.80-1.45
2003	987	0.97	0.74-1.27	1.17	0.87-1.58
2005	781	0.88	0.66-1.18	1.07	0.78–1.48

Atrial fibrillation in acute myocardial infarction: a systematic review of the incidence, clinical features and prognostic implications

Joern Schmitt^{1†}, Gabor Duray^{1†}, Bernard J. Gersh², and Stefan H. Hohnloser^{1*}

- Most Important Predictors of AF in pts. With AMI were:
 - -CHF
 - Advanced Age

 In the RICO study the rate of AF was similar in pts with STEMI And NSTEMI

Long-term prognosis of patients with paroxysmal atrial fibrillation complicating acute myocardial infarction

S. BEHAR, Z. ZAHAVI, U. GOLDBOURT, H. REICHER-REISS AND THE SPRINT SUDY GROUP (see Appendix)

SPRINT Coordinating Center, Neufeld Cardiac Research Institute, Sheba Medical Center, Tel Hashomer 52621, Israel

Table 3 Hospital myocardial infarctic Table 4 Long-term mortality of patients with paroxysmal atrial fibrillation complicating acute myocardial infarction

	 Mortality 	$\begin{array}{c} PAF \\ (n=430) \end{array}$			Others (n = 4247)	
nder Males Female		no.	%	no	%	-
e (years) ≤ 59 60-69 > 70 1F in CCU	l year 5 years	80 186	18 6 43·3	34 108		<0.0003 <0.0003
es 10	152	32.0 8.7	163	5.1	<0.05	
location Anterior nferior on Q MI ateral	76 49 7 5	27 6 22·6 20·0 23·8	445 251 35 26	20·3 12·6 8·7 11·0	<0.001 <0.001 <0.05 <0.05	
al	147	25.5	828	16.3	< 0.001	

Significance of Paroxysmal Atrial Fibrillation Complicating Acute Myocardial Infarction in the Thrombolytic Era

Michael Eldar, MD; Menachem Canetti, MD; Zeev Rotstein, MD; Valentina Boyko, MSc; Shmuel Gottlieb, MD; Elieser Kaplinsky, MD; Solomon Behar, MD; for the SPRINT and Thrombolytic Survey Groups

TABLE 1. Characteristics of 2866 TE Patients in aComparison of Patients With $(+)$ and Without $(-)$ PAF				
	PAF+ (n=255), No. (%)	PAF- (n=2611), No. (%)	Р	
Mortality				
30 d	64 (25.1)	270 (10.4)	.001	
1 y	98 (38.4)	397 (15.4)	.001	

Prognostic Significance of Atrial Fibrillation/Atrial Flutter in Patients With Acute Myocardial Infarction Treated With Percutaneous Coronary Intervention

Kunihiro Kinjo, MD, Hiroshi Sato, MD, PhD, Hideyuki Sato, MD, Yozo Ohnishi, MD, Eiji Hishida, MD, Daisaku Nakatani, MD, Hiroya Mizuno, MD, Masatake Fukunami, MD, Yukihiro Koretsune, MD, Hiroshi Takeda, MD, and Masatsugu Hori, MD, on behalf of the Osaka Acute Coronary Insufficiency Study (OACIS) Group

TABLE 4 In-hospital Events					
	+				
Event	(n = 297)	(n = 2,178)	p value		
Death	16.0%	6.7%	< 0.001		
Cardiogenic shock	15.7%	6.1%	< 0.001		
Congestive heart failure	34.8%	16.6%	< 0.001		
Recurrent infarction	5.0%	3.3%	0.129		
Recurrent ischemia	2.3%	2.7%	0.756		
Cardiac rupture	3.0%	1.4%	0.042		
Acute mitral regurgitation	1.3%	0.6%	0.146		
Ventricular tachycardia/fibrillation	27.3%	14.7%	< 0.001		
Stroke	2.3%	0.6%	0.002		

Incidence and prognostic significance of atrial fibrillation in acute myocardial infarction: the GISSI-3 data

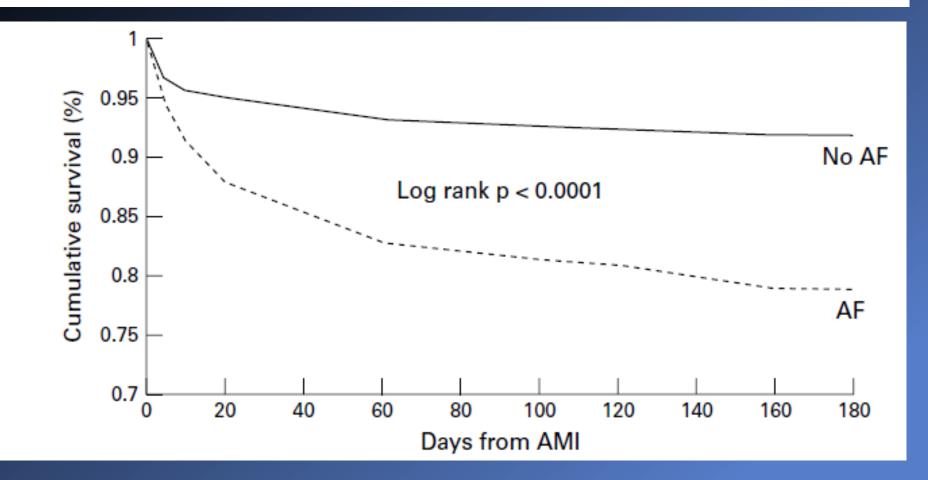

Event	Without AF (n=16 363)	With AF (n=1386)	p Value
Clinical evidence of heart failure	23.6	51.5	< 0.0001
Congestive heart failure > 4 days	3.8	12.1	< 0.0001
Reinfarction + postinfarction angina	13.8	15.3	NS
Sustained ventricular tachycardia	1.9	4.3	< 0.0001
Ventricular fibrillation	2.3	4.4	< 0.0001
Death in hospital	5.0	12.6	< 0.0001
Stroke	0.7	0.8	NS

Table 3 In-hospital events in patients with or without atrial fibrillation (AF)

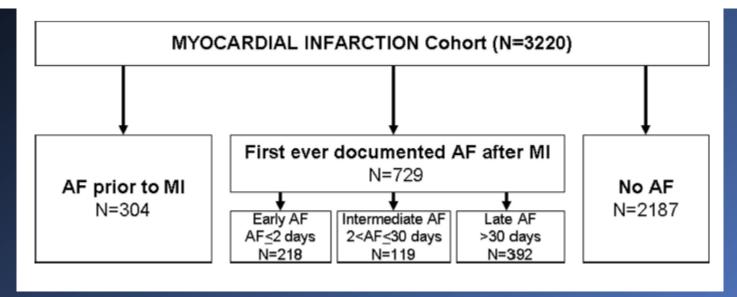
Table 4Short term and medium term prognosTable 5Long term (four years) independent predictors of
mortality in patients discharged alive (Cox model)

	RR unadjusted	95%		Relative risk	95% CI
In-hospital mortality Six month mortality	3.01 2.93	$2.55 \\ 2.40$	Age >70 years Killip class 3	2.93 2.12	2.70 to 3.18 1.56 to 2.89
			Atrial fibrillation Killip class 2 Left ventricular dilatation	1.78 1.73 1.67	1.60 to 1.98 1.58 to 1.90 1.50 to 1.86
Heart 2001;86:527–532			Congestive heart failure > 4 days	1.65	1.43 to 1.90

Incidence and prognostic significance of atrial fibrillation in acute myocardial infarction: the GISSI-3 data

Comparison of Outcomes of Patients With Acute Coronary Syndromes With and Without Atrial Fibrillation

Rajendra H. Mehta, MD, MS, Omar H. Dabbous, MD, MPh, Christopher B. Granger, MD, Polina Kuznetsova, MS, Eva M. Kline-Rogers, MS, Frederick A. Anderson, Jr., PhD, Keith A.A. Fox, MB, CHB, Joel M. Gore, MD, Robert J. Goldberg, PhD, and Kim A. Eagle, MD, for the GRACE Investigators*


 TABLE 5
 In-hospital Outcomes of Patients With ACS Who Have New-onset and Previous AF Compared With Those Without Any AF

Outcome	New AF Odds Ratio*	New AF 95% Confidence Interval*	Prior AF Odds Ratio*	Prior AF 95% Confidence Interval*
Death (unadjusted)	3.67	3.09-4.37	1.96	1.41-2.73
Death (adjusted)	1.65	1.30-2.09	1.01	0.78-1.30
Reinfarction (unadjusted)	2.48	1.79-3.42	1.37	0.77-2.45
Reinfarction (adjusted)	2.00	1.37-2.93	0.92	0.55-1.54
Cardiogenic shock (unadjusted)	4.38	3.67-5.21	2.69	1.91-3.78
Cardiogenic shock (adjusted)	2.40	1.88-3.06	0.64	0.46-0.89
Pulmonary edema (unadjusted)	4.98	4.28-5.80	3.25	2.41-4.38
Pulmonary edema (adjusted)	2.83	2.27-3.52	0.83	0.64-1.08
Cardiac arrest (unadjusted)	3.53	2.96-4.21	2.53	1.86-3.45
Cardiac arrest (adjusted)	1.97	1.56-2.50	1.07	0.81-1.41
Stroke (unadjusted)	2.86	1.97-4.17	1.49	0.74-3.03
Stroke (adjusted)	1.33	0.80-2.20	1.19	0.70-2.02
Major bleed (unadjusted)	2.69	2.16-3.34	1.42	0.98-2.06
Major bleed (adjusted)	1.64	1.25-2.14	0.79	0.57-1.08

*Referrent = no AF.

Atrial Fibrillation and Death After Myocardial Infarction A Community Study

Patricia Jabre, MD, PhD; Xavier Jouven, MD, PhD; Frédéric Adnet, MD, PhD; Gabriel Thabut, MD, PhD; Suzette J. Bielinski, PhD; Susan A. Weston, MS; Véronique L. Roger, MD, MPH

Atrial Fibrillation and Death After Myocardial Infarction A Community Study

Patricia Jabre, MD, PhD; Xavier Jouven, MD, PhD; Frédéric Adnet, MD, PhD; Gabriel Thabut, MD, PhD; Suzette J. Bielinski, PhD; Susan A. Weston, MS; Véronique L. Roger, MD, MPH

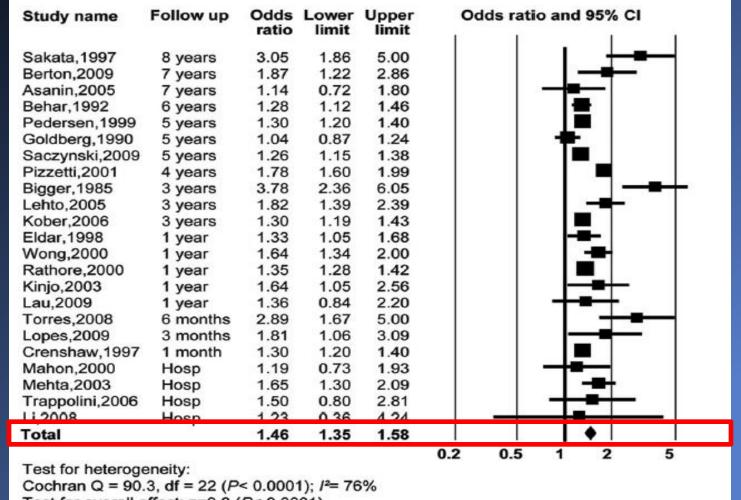

	Prior AF	Early AF	Intermediate AF	Late AF	P *
Death					
Unadjusted	3.50 (3.03, 4.05)	3.02 (2.55, 3.58)	2.95 (2.36, 3.68)	5.25 (4.51, 6.10)	< 0.001
Model 1 ⁺	1.68 (1.44, 1.95)	1.82 (1.54, 2.17)	2.20 (1.76, 2.75)	3.25 (2.79, 3.78)	< 0.001
Model 2 ⁺	1.46 (1.26, 1.70)	1.63 (1.37, 1.93)	1.81 (1.45, 2.27)	2.58 (2.21, 3.00)	< 0.001
Death within 30 d post-MI					
Unadjusted	2.42 (1.78, 3.30)	3.72 (2.70, 5.12)	7.68 (4.91,12.01)	Not applicable	< 0.001
Model 1 ⁺	1.21 (0.88, 1.66)	2.19 (1.58, 3.04)	5.86 (3.74, 9.17)	Not applicable	< 0.001
Model 2 [‡]	1.13 (0.82, 1.55)	2.02 (1.46, 2.80)	4.99 (3.18, 7.82)	Not applicable	< 0.001
Death among 30 d survivors					
Unadjusted	3.99 (3.38, 4.73)	2.84 (2.32, 3.48)	2.52 (1.94, 3.28)	5.22 (4.46, 6.11)	< 0.001
Model 1 ⁺	1.88 (1.58, 2.24)	1.73 (1.41, 2.13)	1.81 (1.39, 2.35)	3.21 (2.74,3.76)	< 0.001
Model 2 ⁺	1.59 (1.33, 1.89)	1.51 (1.23, 1.85)	1.47 (1.13, 1.92)	2.54 (2.17, 2.98)	< 0.001
Cardiovascular death among 30 d survivors					
Unadjusted	3.88 (3.07, 4.91)	3.33 (2.55, 4.33)	3.41 (2.48, 4.70)	5.77 (4.66, 7.16)	< 0.001
Model 1 ⁺	1.91 (1.49, 2.43)	2.04 (1.56, 2.67)	2.49 (1.81, 3.44)	3.62 (2.92, 4.49)	< 0.001
Model 2 ⁺	1.55 (1.22, 1.98)	1.72 (1.32, 2.25)	1.94 (1.40, 2.68)	2.70 (2.17, 3.36)	< 0.001

Table 2. Atrial Fibrillation and Risk of All-Cause Death and Cardiovascular Death After MI

Circulation. 2011;123:2094-2100

Mortality Associated With Atrial Fibrillation in Patients With Myocardial Infarction : A Systematic Review and Meta-Analysis

Patricia Jabre, Véronique L. Roger, Mohammad H. Murad, Alanna M. Chamberlain, Larry Prokop, Frédéric Adnet and Xavier Jouven

Test for overall effect: z=9.8 (P< 0.0001)

Mortality Associated With Atrial Fibrillation in Patients With Myocardial Infarction : A Systematic Review and Meta-Analysis

Patricia Jabre, Véronique L. Roger, Mohammad H. Murad, Alanna M. Chamberlain, Larry Prokop, Frédéric Adnet and Xavier Jouven

Study name	Follow up	Odds ratio	Lower limit	Upper limit	Odds ratio and 95% CI	
Asanin,2005	7 years	1.14	0.72	1.80		
Behar,1992	6 years	1.28	1.12	1.46		
Pedersen, 1999	-	1.42	1.19	1.69		New AF
Saczynski,2009	9 5 years	1.26	1.15	1.38		
Lehto,2005	3 years	1.82	1.39	2.39		
Eldar, 1998	1 year	1.33	1.05	1.68		
Lau,2009	1 year	1.36	0.84	2.20		
Mehta,2003	Hosp	1.65	1.30	2.09		
Trappolini,2006	6 Hosp	1.50	0.80	2.81		
Total		1.37	1.26	1.49		
Test for heterogeneity: Cochran Q = 11.1, df = 8 (Test for overall effect: z=7.					0.2 0.5 1 2 5	
Study name	Follow up	Odds ratio	Lower limit	Upper limit	Odds ratio and 95% Cl	
Pedersen,1999	5 years	1.30	1.20	1.40		Known AF
Lehto,2005	3 years	1.32	1.12	1.55		
Lau,2009	1 year	1.42	1.01	1.99		
Mehta,2003	Hosp	1.01	0.78	1.30	🕂	

•

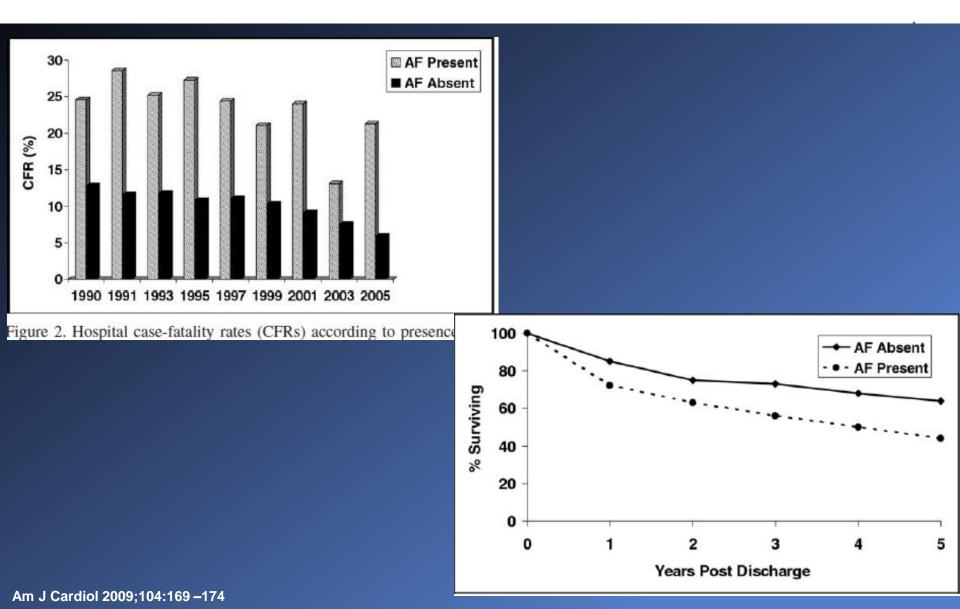
5

0.2 0.5 1 2

Test for heterogeneity:

Total

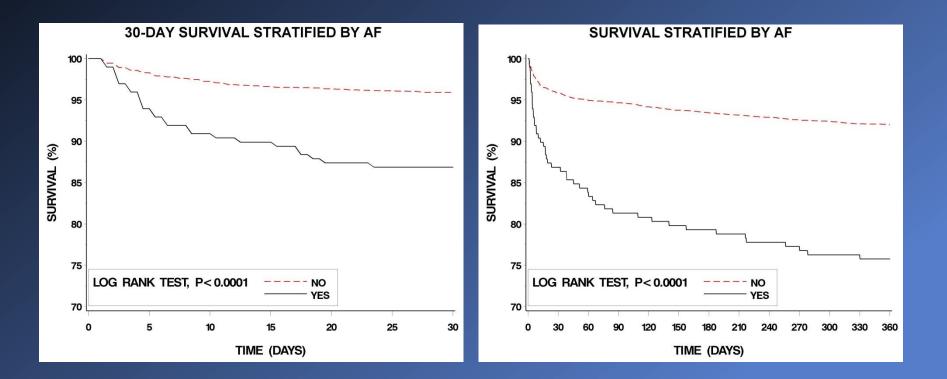
Cochran Q = 3.9, df = 3 (P= 0.27); 12= 24% Test for overall effect: z=5.1 (P< 0.0001)


1.16

1.27

1.40

Circulation. 2011;123:1587-1593


Trends in Atrial Fibrillation Complicating Acute Myocardial Infarction

ACSIS data 2000-2010

30-day

1- year

Trends in Atrial Fibrillation Complicating Acute Myocardial Infarction

Table 3

Crude and multivariable adjusted odds of one-year mortality in those who developed atrial fibrillation during hospitalization for acute myocardial infarction: Worcester Heart Attack Study

Period	Patients	Crude OR	95% CI	Adjusted OR*	95% CI
1990 [†]	120	1.0	_	1.0	_
1991	104	1.17	0.57-2.43	1.23	0.56-2.70
1993	126	1.32	0.77-3.00	1.47	0.70-3.07
1995	112	1.23	0.59-2.59	1.42	0.63-3.22
1997	108	1.22	0.59-2.54	1.33	0.59-3.00
1999	106	1.48	0.74-2.98	1.73	0.80-3.76
2001	184	1.84	0.98-3.45	1.89	0.92-3.87
2003	161	0.94	0.49-1.81	0.84	0.40-1.77
2005	121	0.85	0.41-1.75	0.77	0.34-1.76

Mortality

- AF is Independently Associated with increased risk of in-hospital as well as longterm death among patients with ACS.
- New as well as Prevalent AF are associated with death
- The risk has not changed much over the years
- Mortality is of cardiac causes in the majority: sudden and non-sudden death

Atrial Fibrillation and Stroke in ACS

Atrial Fibrillation in the Setting of Acute Myocardial Infarction: The GUSTO-I Experience

BRIAN S. CRENSHAW, MD, SAMUEL R. WARD, MD,* CHRISTOPHER B. GRANGER, MD, FACC, AMANDA L. STEBBINS, MS, ERIC J. TOPOL, MD, FACC,* ROBERT M. CALIFF, MD, FACC, FOR THE GUSTO-I TRIAL INVESTIGATORS[†]

Durham, North Carolina and Cleveland, Ohio

Table 4. Clinical Outcomes

	Atrial Fi	brillation	
	None (n = $36,611$)	Any $(n = 4,280)$	p Value
Mortality (unadjusted)			
In-hospital	2,104 (5.8)	591 (13.8)	0.0001
30 d	2,219 (6.1)	611 (14.3)	0.0001
1 yr	(8.4)*	(21.5)*	< 0.0001
Stroke	467 (1.3)	133 (3.1)	0.0001
Hemorrhagic	230 (0.6)	38 (0.9)	0.037
Hemorrhagic conversion	26 (0.07)	8 (0.19)	
Ischemic	172 (0.5)	75 (1.8)	0.0001
Unknown	31 (0.08)	12 (0.28)	
Time to ischemic stroke from symptom onset (d)	3.0	5.3	
Death or disabling stroke	2,374 (6.5)	663 (15.5)	0.0001

Significance of Paroxysmal Atrial Fibrillation Complicating Acute Myocardial Infarction in the Thrombolytic Era

Michael Eldar, MD; Menachem Canetti, MD; Zeev Rotstein, MD; Valentina Boyko, MSc; Shmuel Gottlieb, MD; Elieser Kaplinsky, MD; Solomon Behar, MD; for the SPRINT and Thrombolytic Survey Groups

TABLE 1. Characteristics of 2866 TE Patients in a

Comparison of Patients With $(+)$ and Without $(-)$ PAF					
	PAF+ (n=255), No. (%)	PAF- (n=2611), No. (%)	Р		
Age, mean±SD y	70±11	62±12	<.001		
Age≥70 y, n (%)	143 (56)	821 (31)	.001		
Female, n (%)	95 (37)	647 (25)	.001		
Diabetes mellitus, n (%)	82 (32)	654 (25)	.01		
Past AMI, n (%)	84 (33)	704 (27)	.04		
Hypertension, n (%)	117 (46)	1014 (39)	.03		
Anterior AMI, n (%)	120 (47)	1189 (46)	NS		
CHF on admission, n (%)	138 (55)	645 (26)	.001		
Angina pectoris, n (%)	97 (38)	869 (33)	NS		
Stroke in CCU, n (%)	10 <mark>(</mark> 3.9)	16 (0.6)	.001		

Circulation. 1998;97:965-970

Clinical research

Prognostic risk of atrial fibrillation in acute myocardial infarction complicated by left ventricular dysfunction: the OPTIMAAL experience

Mika Lehto^{1*}, Steven Snapinn^{2^{\dagger}}, Kenneth Dickstein³, Karl Swedberg⁴, and Markku S. Nieminen¹ on behalf of the OPTIMAAL investigators

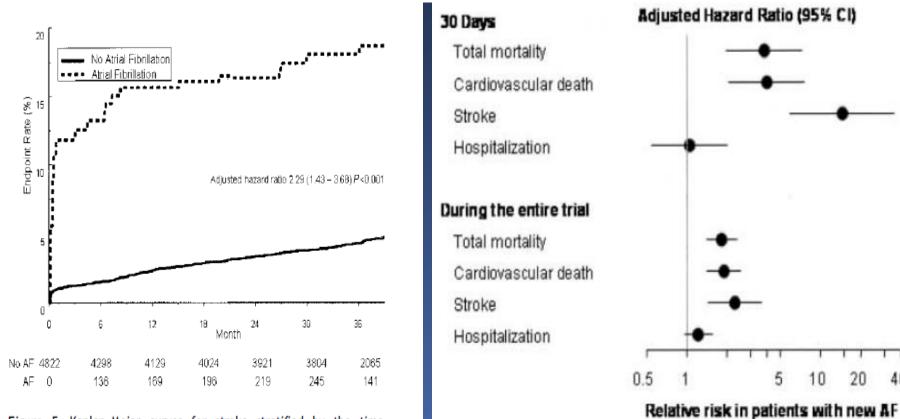


Figure 5 Kaplan-Meier curves for stroke stratified by the timedependent presence of AF. Patients with AF at baseline excluded.

Figure 6 Adjusted risk associated with new-onset AF.

40

Management

- Management of AF
 - Rhythm and Rate and symptoms
 - Anti-Thrombotic Management

ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation

Table 24 Management of atrial fibrillation

Recommendations	Class ^a	Level ^b	R ef ^C
Rhythm control should be considered in patients with atrial fibrillation secondary to a trigger or substrate that has been corrected (e.g. ischaemia).	lla	с	-
Acute rate control of atrial fibrillation			
Intravenous beta-blockers or non-dihydropyridine CCB (e.g. diltiazem, verapamil) ^d are indicated if there are no clinical signs of acute heart failure.	I.	A	323
Amiodarone or i.v. digitalis is indicated in case of rapid ventricular response in the presence of concomitant acute heart failure or hypotension.	I.	В	324
Cardioversion			
Immediate electrical cardioversion is indicated when adequate rate control cannot be achieved promptly with pharmacological agents in patients with atrial fibrillation and on-going ischaemia, severe haemodynamic compromise or heart failure.	T	с	-
Intravenous amiodarone is indicated for conversion to sinus rhythm in stable patients with recent onset atrial fibrillation and structural heart disease.	T	A	250
Digoxin (LoE A), verapamil, sotalol, metoprolol (LoE B) and other beta-blocking agents (LoE C) are ineffective in converting recent onset atrial fibrillation to sinus rhythm and should not be used for rhythm control (although beta blockers or digoxin may be used for rate control).	ш	АВС	250

ESC Guidelines for the management of acute myocardial infarction in patients presenting with **ST-segment elevation**

- Patients with atrial fibrillation and risk factors for thromboembolism should therefore be adequately treated with oral anticoagulation.
- Because AF will generally require anticoagulation, when choosing a stent in these patients, the benefits of DES on restenosis should be weighed carefully against the substantial bleeding risks that are associated with the prolonged combination of triple antithrombotic therapy.

2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction

A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines

 "Management of AF during hospitalization for STEMI is based on the usual considerations of rhythm versus rate control and the indications for anticoagulation according to current guidelines"

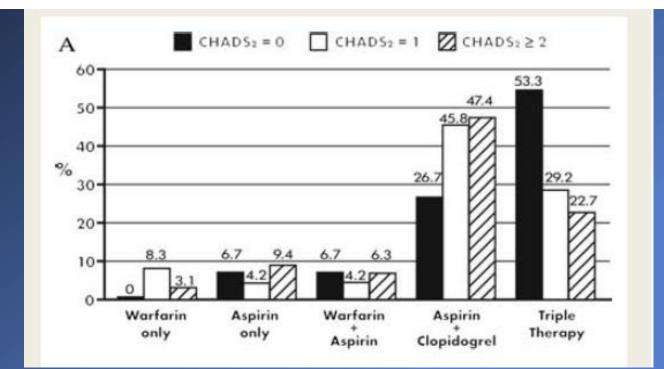
ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation

AF not mentioned

ACCF/AHA Focused Update

2012 ACCF/AHA Focused Update of the Guideline for the Management of Patients With Unstable Angina/Non–ST-Elevation Myocardial Infarction (Updating the 2007 Guideline and Replacing the 2011 Focused Update)

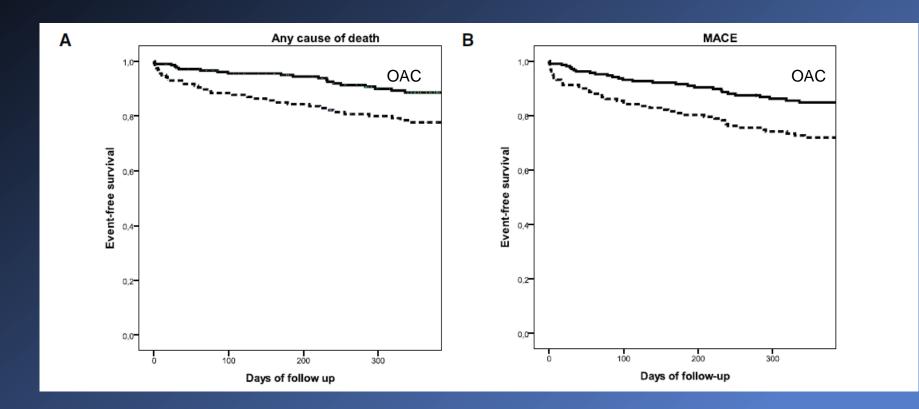
A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines


AF not mentioned

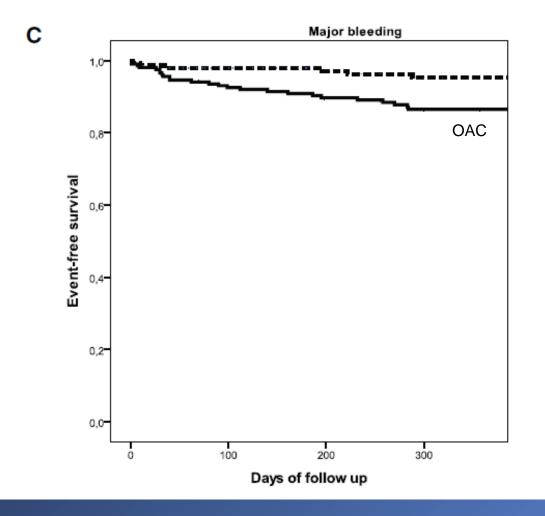
Recommendations for AF in acute coronary syndrome

Recommendations	Class ^a	Level ^b	Ref. ^c
DCC is recommended for patients with severe haemodynamic compromise or intractable ischaemia, or when adequate rate control cannot be achieved with pharmacological agents in patients with ACS and AF.	T	U	
Intravenous administration of amiodarone is recommended to slow a rapid ventricular response to AF in patients with ACS.	I.	с	
Intravenous β-blockers are recommended to slow a rapid ventricular response to AF in patients with ACS.	I	с	
Intravenous administration of non-dihydropyridine calcium antagonists (verapamil, diltiazem) should be considered to slow a rapid ventricular response to AF in patients with ACS and no clinical signs of heart failure.	lla	с	
Intravenous administration of digoxin may be considered to slow a rapid ventricular response in patients with ACS and AF associated with heart failure.	ПЬ	с	
Administration of flecainide or propafenone is not recommended in patients with AF in the setting of ACS.	ш	в	124

Antithrombotic therapy and outcomes of patients with atrial fibrillation following primary percutaneous coronary intervention: results from the APEX-AMI trial



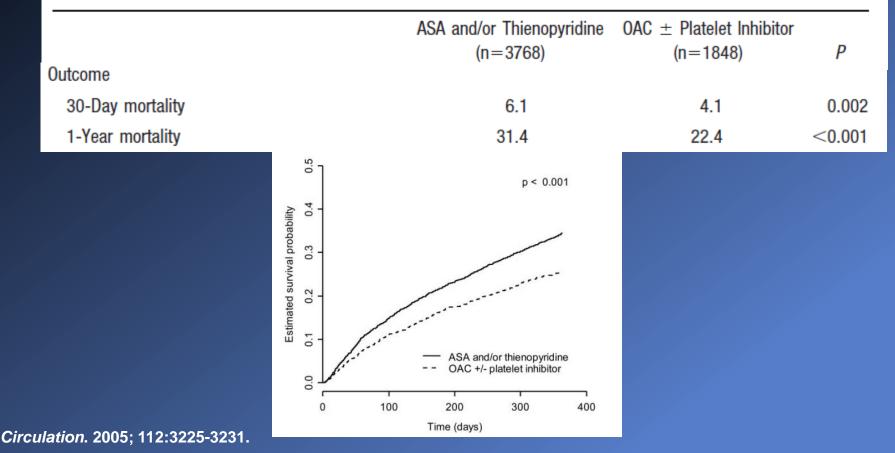
Antithrombotic therapy and outcomes of patients with atrial fibrillation following primary percutaneous coronary intervention: results from the APEX-AMI trial


 Warfarin and Triple therapy were associated with lower risk of death and stroke

Should We Recommend Oral Anticoagulation Therapy in Patients With Atrial Fibrillation Undergoing Coronary Artery Stenting With a High HAS-BLED Bleeding Risk Score?

Circ Cardiovasc Interv. 2012;5:459-466

Should We Recommend Oral Anticoagulation Therapy in Patients With Atrial Fibrillation Undergoing Coronary Artery Stenting With a High HAS-BLED Bleeding Risk Score?



Circ Cardiovasc Interv. 2012;5:459-466

Arrhythmia/Electrophysiology

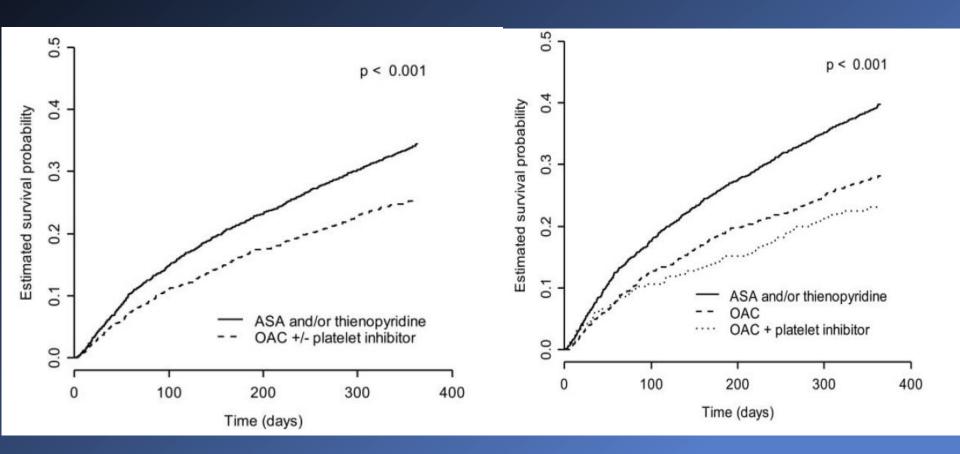
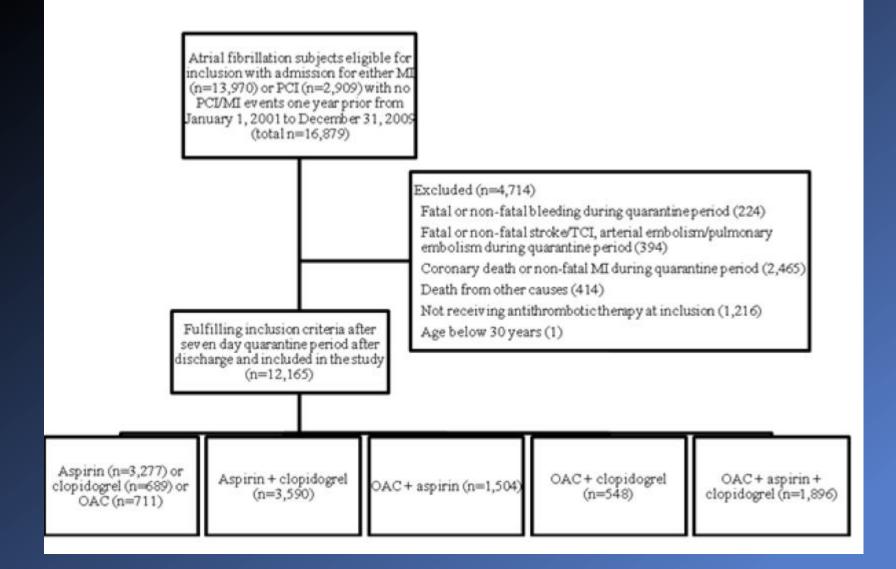

Anticoagulation Therapy in Atrial Fibrillation in Combination With Acute Myocardial Infarction Influences Long-Term Outcome

TABLE 1. Overview of Data From Patients Discharged Alive With AF and a Diagnosis of AMI Divided Into 2 Groups of Antithrombotic Therapy at Discharge

Arrhythmia/Electrophysiology

Anticoagulation Therapy in Atrial Fibrillation in Combination With Acute Myocardial Infarction Influences Long-Term Outcome


Circulation. 2005; 112:3225-3231.

Accepted Manuscript

Oral anticoagulation and antiplatelets in atrial fibrillation patients after myocardial infarction and coronary intervention

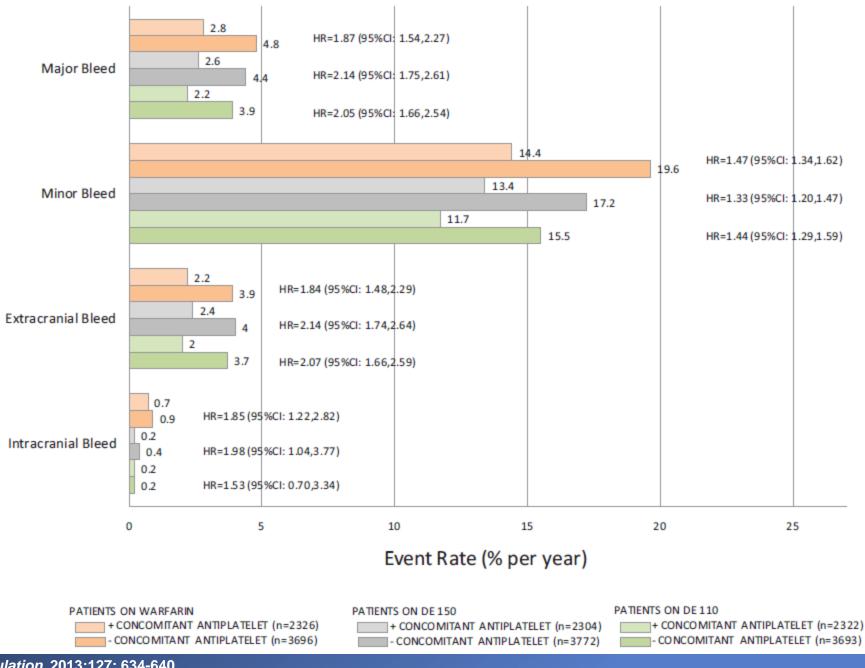
Morten Lamberts, MD Gunnar H. Gislason, MD, PhD, (FACC) Jonas Bjerring Olesen, MD Søren Lund Kristensen, MD Anne-Marie Schjerning Olsen, MD Anders Mikkelsen, MB Christine Benn Christensen, MD Gregory Y.H. Lip, MD, (FACC) Lars Køber, MD, DMSc Christian Torp-Pedersen, MD, DMSc, (FACC) Morten Lock Hansen, MD, PhD

Only 32% of AF post MI pts were treated with OAC

 \wedge

- In real-life AF patients with indication for multiple antithrombotic drugs after MI/PCI, OAC and clopidogrel was equal or better on both benefit and safety outcomes compared to triple therapy.
- Our data suggests that triple therapy management regimens might be replaced with OAC and clopidogrel without any additional risk of recurrent thrombotic events and a lower risk of bleeding

 Table II
 Antithrombotic strategies following coronary artery stenting in patients with AF at moderate to high thrombo-embolic risk (in whom oral anticoagulation therapy is required)


Haemorrhagic risk	Clinical setting	Stent implanted	Anticoagulation regimen	
Low or intermediate (e.g. HAS-BLED score 0–2)	Elective	Bare-metal	<u>L month</u> : triple therapy of VKA (INR 2.0–2.5) + aspirin ≤100 mg/day + clopidogrel 75 mg/day <u>Up to 12th month</u> : combination of VKA (INR 2.0–2.5) + clopidogrel 75 mg/day ^b (or aspirin 100 mg/day) <u>Lifelong</u> : VKA (INR 2.0–3.0) alone	
	Elective	Drug-eluting	3 (-olimus ^a group) to 6 (paclitaxel) months: triple therapy of VKA (INR 2.0–2.5) + aspirin ≤100 mg/day + clopidogrel 75 mg/day <u>Up to 12th month</u> : combination of VKA (INR 2.0–2.5) + clopidogrel 75 mg/day ^b (or aspirin 100 mg/day) <u>Lifelong</u> : VKA (INR 2.0–3.0) alone	
	ACS	Bare-metal/ drug-eluting	<u>6 months</u> ; triple therapy of VKA (INR 2.0–2.5) + aspirin ≤100 mg/day + clopidogrel 75 mg/day <u>Up to 12th month</u> : combination of VKA (INR 2.0–2.5) + clopidogrel 75 mg/day ^b (or aspirin 100 mg/day) <u>Lifelong</u> : VKA (INR 2.0–3.0) alone	
High (e.g. HAS-BLED score ≥3)	Elective	Bare-metal ^c	<u>2-4 weeks:</u> triple therapy of VKA (INR 2.0-2.5) + aspirin ≤100 mg/day + clopidogrel 75 mg/day <u>Lifelong:</u> VKA (INR 2.0-3.0) alone	
	ACS	Bare-metal ^c	<u>4 weeks</u> : triple therapy of VKA (INR 2.0–2.5) + aspirin ≤100 mg/day + clopidogrel 75 mg/day <u>Up to 12th month</u> : combination of VKA (INR 2.0–2.5) + clopidogrel 75 mg/day ^b (or aspirin 100 mg/day) <u>Lifelong</u> : VKA (INR 2.0–3.0) alone	

NOAC s and AntiPlatelets

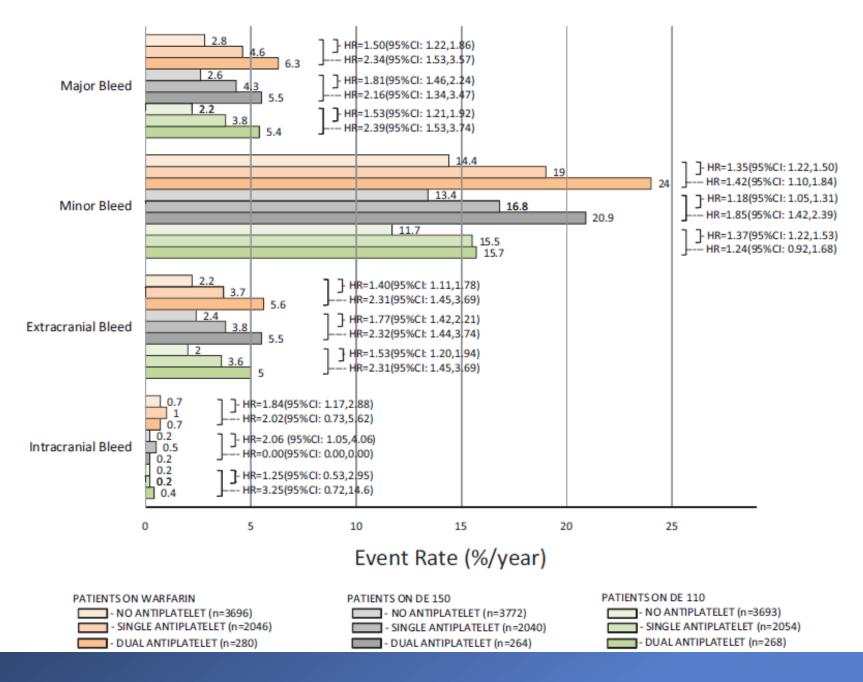

Concomitant Use of Antiplatelet Therapy with Dabigatran or Warfarin in the Randomized Evaluation of Long-Term Anticoagulation Therapy (RE-LY) Trial

Table 1.	Prevalence of Antiplatelet Use at Baseline and at 4			
Landmark Periods Throughout the Study				

Landmark Period	DE110, n/N (%)	DE150, n/N (%)	Warfarin, n/N (%)		
Day 180	1626/5901 (27.6)	1569/5966 (26.3)	1592/5909 <mark>(</mark> 26.9)		
Day 360	1605/5778 (27.8)	1521/5833 (26.1)	1561/5784 (27.0)		
Day 540	1301/4693 (27.7)	1269/4759 (26.7)	1262/4685 (26.9)		
Day 720	876/3204 (27.3)	886/3285 (27.0)	849/3164 (26.8)		
DE110 indicates dabigatran etexilate 110 mg BID; DE150, dabigatran etexilate 150 mg BID.					

Circulation. 2013;127: 634-640

Circulation. 2013;127: 634-640

European Heart Journal (2013) **34**, 1670–1680 doi:10.1093/eurheartj/eht049

New oral anticoagulants in addition to single or dual antiplatelet therapy after an acute coronary syndrome: a systematic review and meta-analysis

Jonas Oldgren^{1,2*}, Lars Wallentin^{1,2}, John H. Alexander³, Stefan James^{1,2}, Birgitta Jönelid¹, Gabriel Steg^{4,5,6}, and Johan Sundström^{1,2}

In patients with a recent acute coronary syndrome, the addition of a new oral anticoagulant to antiplatelet therapy results in a modest reduction in cardiovascular events but a substantial increase in bleeding, most pronounced when new oral anticoagulants are combined with dual antiplatelet therapy

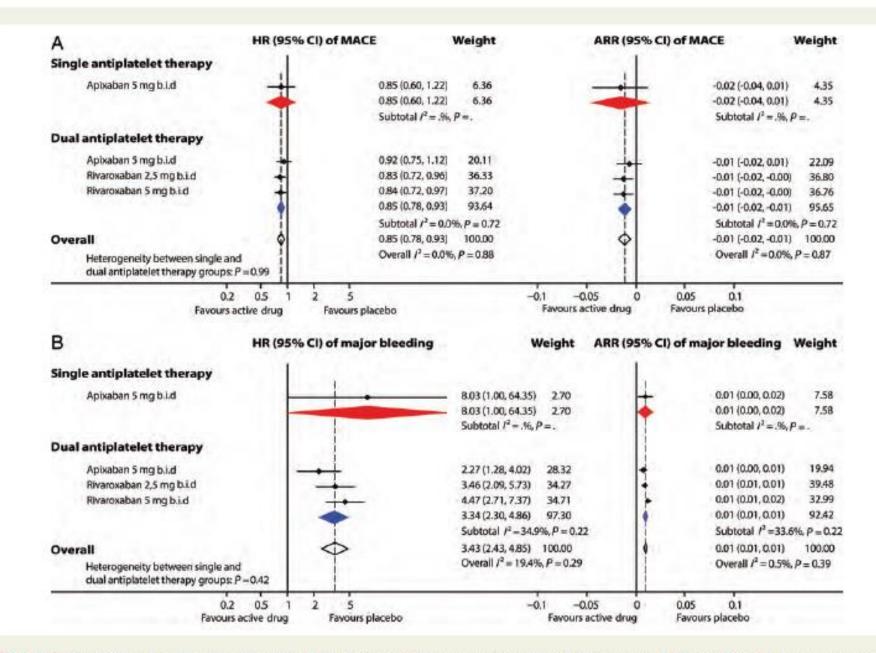


Figure 4 Effect of adding an oral anticoagulant to single (aspirin) or dual (aspirin and clopidogrel) antiplatelet therapy on rates of major adverse cardiovascular events (A) and TIMI major bleeding events (B) after an acute coronary syndrome in a subgroup of phase III studies.

Conclusions

- AF in pts with ACS is frequent (10-20%)
- The rate of AF is not declining
- AF in pts with ACS is associated with increased short and long-term mortality risk and with increased risk of stroke
- Antithrombotic management is complicated by the need to use antiplatelets after PCI

Conclusions

- It seems that a combination of dual antiplatelet therapy with OAC (including NOACS) is associated with lower rate of CV endpoints but at a price of increased risk of bleeding
- The combination of a OAC with clopidogrel may the most beneficial in terms of harmbenefit and net clinical benefit.

Thank You