

Eight Areas of Unmet Needs

Paul A. Gurbel, M.D.

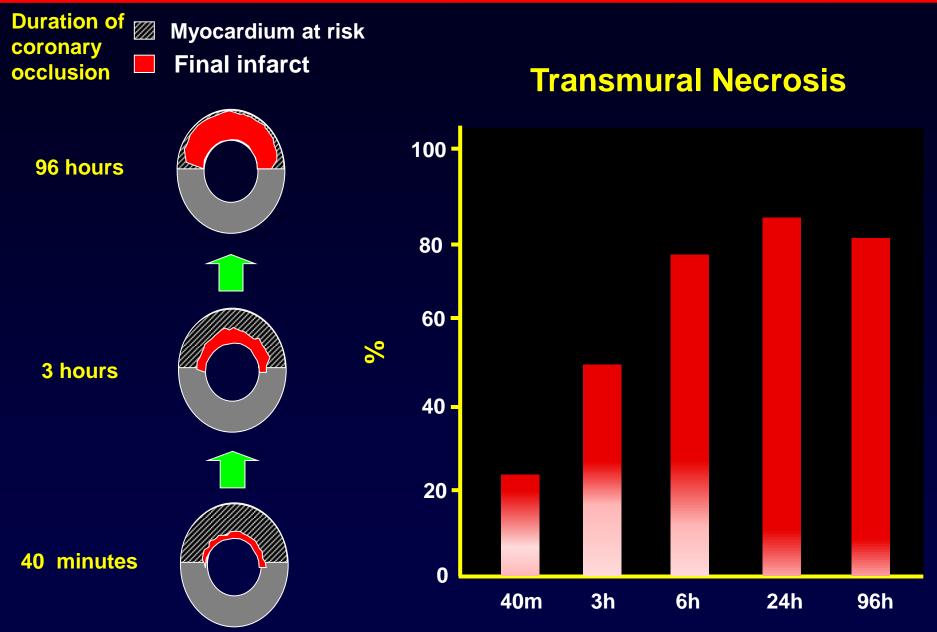
Sinai Center for Thrombosis Research, Baltimore, Maryland, U.S.A. Professor of Medicine, Johns Hopkins University School of Medicine Adjunct Professor of Medicine, Duke University School of Medicine

Disclosures

Research Grants/Support Nanosphere Haemonetics Daiichi Sankyo/Lilly CSL Pharmaceuticals HCRI NIH **Honoraria/Consulting** Pozen Astra Zeneca Daiichi Sankyo/Lilly **Accumetrics Nanosphere** Boehringer Merck Medtronic CSL t2 Biosystems

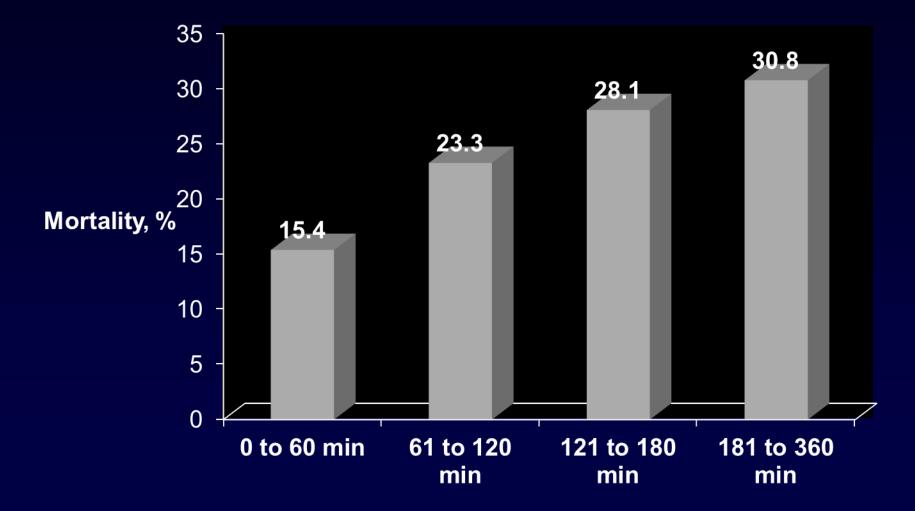
Dr. Gurbel has patents in the field of platelet function testing

The Core of Optimal STEMI Therapy: "Reducing Total Ischemic Time"


Reperfusion Saves Myocardium in A Time-Dependent Fashion

Lives are Saved in A Time-Dependent Fashion

O'Gara PT et al Circulation. 2013;127:e362-425


The "Wavefront Phenomenon" of Myocardial Ischemic Cell Death

Reimer K, Jennings R et al. Circulation. 1977;56:786-794

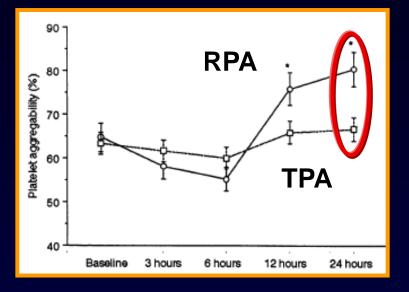
SINAI Center for Thrombosis Research

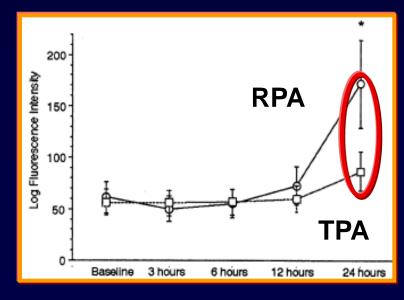
System Delay and Mortality in STEMI Patients

The Core of Optimal STEMI Therapy:

Avoid Fibrinolytic Therapy if Possible:

Incomplete Restoration of Flow


Intracranial Hemorrhage


Enhancement of Platelet Reactivity

GUSTO-III Study: Enhancement of Platelet Reactivity by Fibrinolytics

5uM ADP-Induced Aggregation

Sinai

GPIIb/IIIa Receptor Activation

8 Areas of Unmet Needs/Future Research

1) Patient Awareness

"Delays from symptom onset to STEMI care are unacceptably long"

- -1.5 2.0 h delay (unchanged for last 10 y)
- women, black, elderly, medicaid
- EMS use 60%
 - 1/300 pts transported by private vehicle arrests en route.
 - pre-hosp ECG facilitates early reperfusion.

ALERTS Study: AngelMed Guardian System

Designed to reduce time to treatment and heart muscle damage

Background

- Detects progressive ST shifts and alerts patient
- Implanted like single-chamber pacemaker
- RV lead

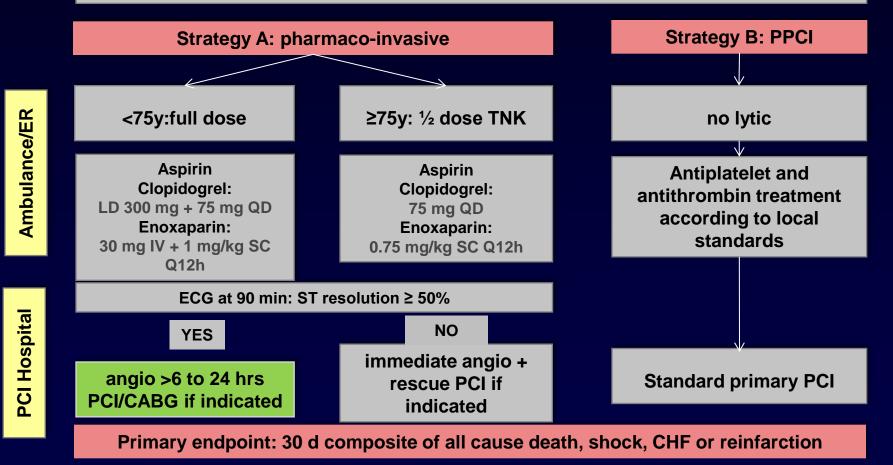
Objective

Demonstrate effectiveness in detection and alerting of rapidly progressive ST shifts.

Study Population

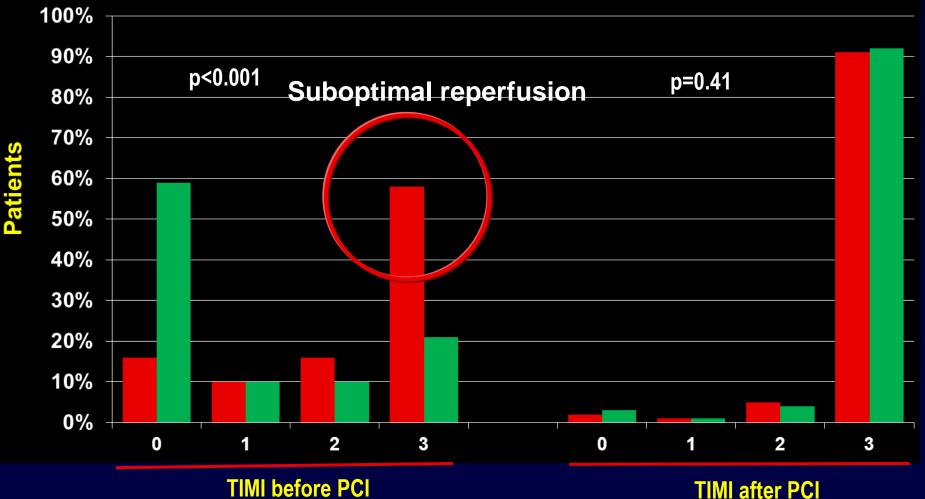
- High-risk ACS (e.g., unstable angina, STEMI or NSTEMI) or undergone or scheduled for CABG within 6 months of implantation
- One of the following: 1) Diabetes, 2) Compromised renal function, 3) TIMI Risk Score ≥3.

2) Regional Systems of Care

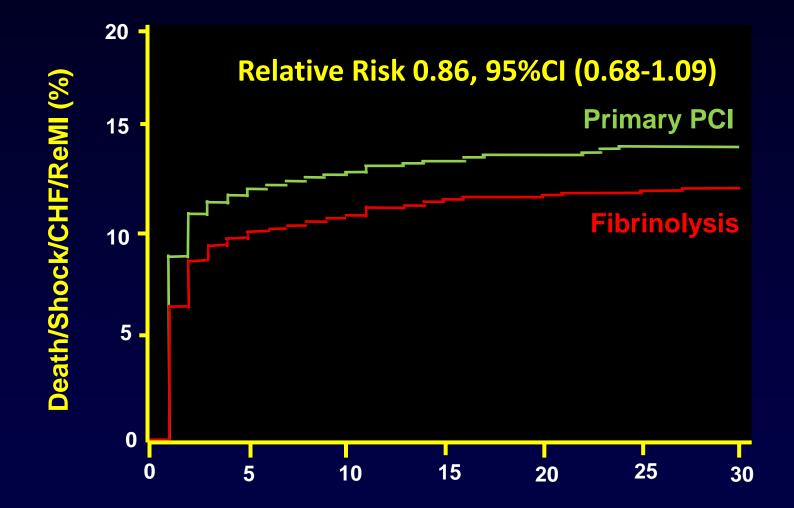

- Prehospital Emergency Medical Systems' protocols
- Out-of-hospital cardiac arrest
- Triage/transfer algorithms
- Rapid expert PCI availability
- Refinement of clinical / time-related factors for earlier lytic use + transfer for PCI
- "Over-reliance on primary PCI"
 - Waning familiarity with lytics
 - Only 10% of transferred pts had FMC-balloon
 <90 min (median 149 min)

STREAM Trial: Study Protocol

STEMI (2 mm)<3 h from onset symptoms, PPCI <60 min not possible


1:1 RANDOMIZATION , OPEN LABEL

STREAM Trial: TIMI Flow Rates


Pharmacoinvasive (n=944) **PPCI** (n=948)

TIMI after PCI

Armstrong PW et al. N Engl J Med. 2013;368:1379-87

STREAM Trial: Primary Endpoint

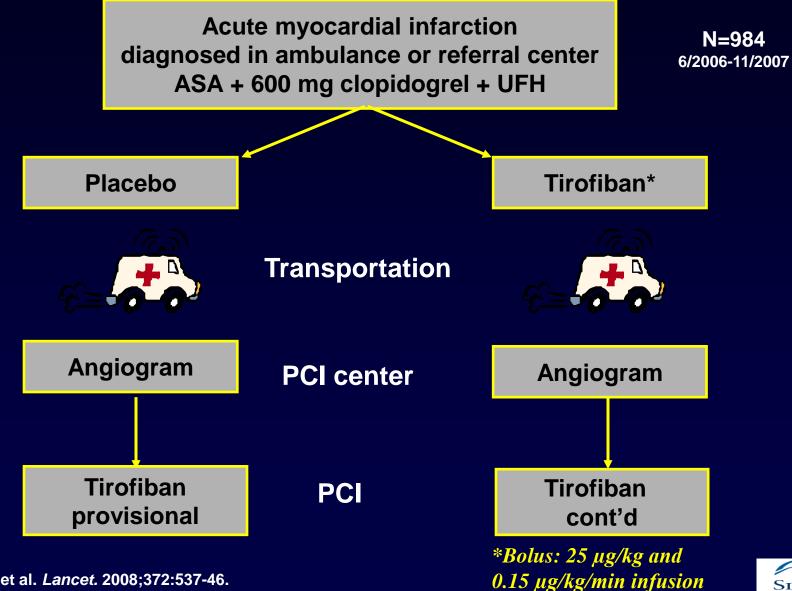
STREAM Trial: Stroke Rates

	Pharmaco-invasive	nvasive PPCI	
TOTAL POPULATION (N=1892)			
Total stroke	15 /939 (1.60%)	5 /946 (0.53%)	0.03
fatal stroke	7 /939 (0.75%)	4 /946 (0.42%)	0.39
Haemorrhagic stroke	9 /939 (0.96%)	2 /946 (0.21%)	0.04
fatal haemorrhagic stroke	6 /939 (0.64%)	2 /946 (0.21%)	0.18
POST AMENDMENT POPULATION (N=1503)			
Total stroke	9 /747 (1.20%)	5 /756 (0.66%)	0.30
fatal stroke	3 /747 (0.40%)	4 /756 (0.53%)	>0.999
Haemorrhagic stroke	4 /747 (0.54%)	2 /756 (0.26%)	0.45
fatal haemorrhagic stroke	2 /747 (0.27%)	2 /756 (0.26%)	>0.999

Author's Conclusion:

"... Early fibrinolysis ... coupled with timely angio resulted in effective reperfusion in pts presenting within 3h of sx onset unable to undergo PCI in 1 h"

Armstrong PW et al. N Engl J Med. 2013 ;368:1379-87


Editorialist's Conclusion:

"..Lack of superiority of fibrinolytic therapy .. coupled with increased intracranial hemorrhage ..make this an inferior strategy.."

"STREAM trial shows us that that the best therapy for STEMI remains a stent"

SINA

Van't Hof AW et al. Lancet. 2008;372:537-46.

Ongoing Tirofiban In Myocardial Infaction Evaluation

Primary Endpoint

Residual ST deviation at 60 min.

	Placebo	Tirofiban	p- value
Readable ECG	94.1%	95.5%	0.358
Residual ST - deviation (mm)	4.8 ±6.3	3.6 ± 4.6	0.003
normal ECG	29.0%	35.5%	0.013
> 3 mm ST-deviation	45.1%	38.1%	0.035

Van't Hof AW et al. Lancet. 2008;372:537-46.

30d Clinical Secondary Endpoints

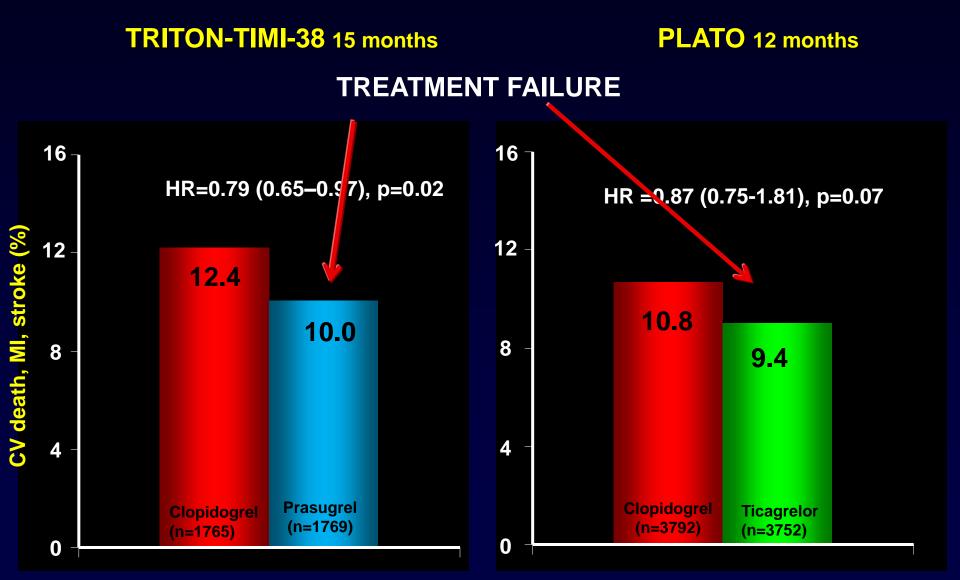
	Placebo n=477	Tirofiban n=473	p-value
Death/MI/uTVR or thrombotic bailout	32.9%	26%	0.020
Death	4.0%	2.3%	0.144
Recurrent MI	2.9%	2.7%	0.863
Stroke	1.5%	0.2%	0.069
Urgent TVR	4.2%	3.8%	0.761
Thromb. Bail out	28.5%	19.9%	0.002
Major bleeding	2.9%	4.0%	0.363

Van't Hof AW et al. Lancet. 2008;372:537-46.

3) Transfer/Management of Non-High Risk Pts After Lytic Treatment

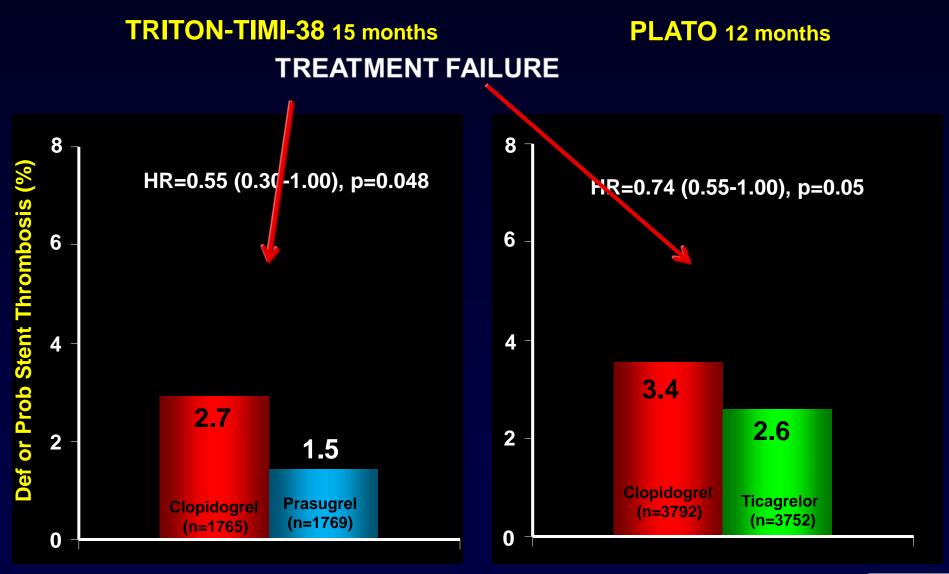
"Transferring low risk patients for angiography with plan to revascularize is common

but,


evidence base for justification is limited"

- Role of platelet function testing and genotyping
- Gender, race and ethnic variability in outcomes
- Role of prasugrel, ticagrelor, Xa, Ila, and PAR-1 inhibitors
- Efficacy and safety of triple antithrombotic therapy in
 - patients requiring anticoagulation
- Relation of access site to bleeding

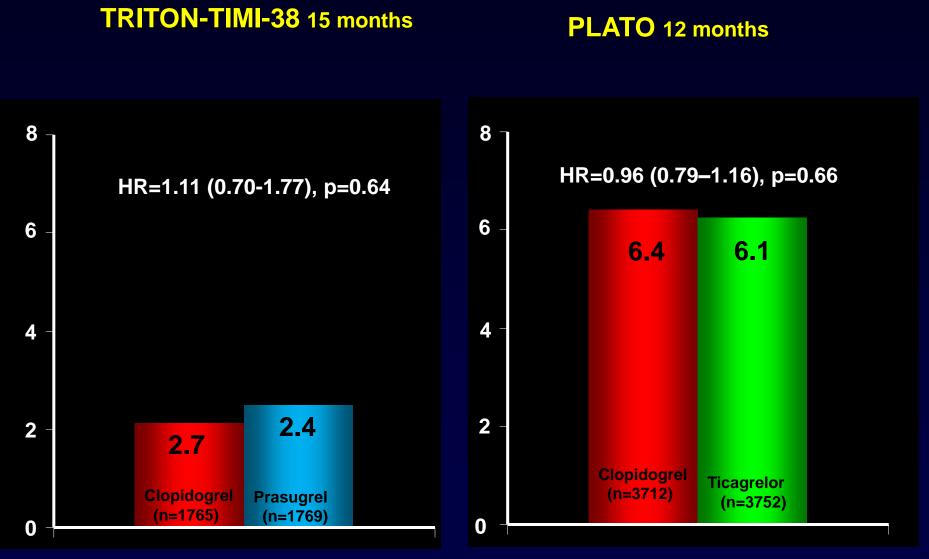
Prasugrel and Ticagrelor in STEMI Primary Outcome



Montalescot G et al. Lancet 2009;373:723-31

Steg PG et al. Circulation 2010;122:2131-

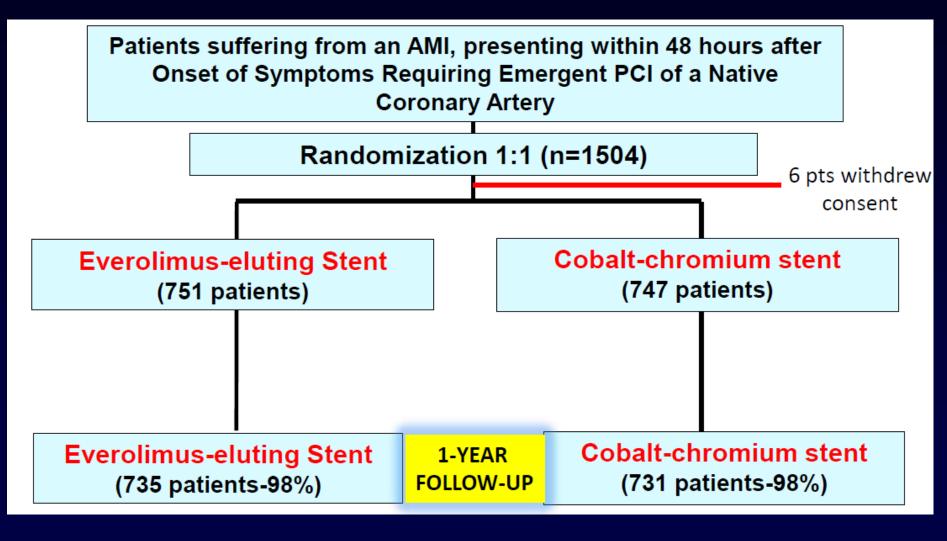
Prasugrel and Ticagrelor in STEMI Stent Thrombosis (Def. or Prob.)



Montalescot G et al. Lancet 2009;373:723-31

Steg PG et al. Circulation 2010;122:2131-

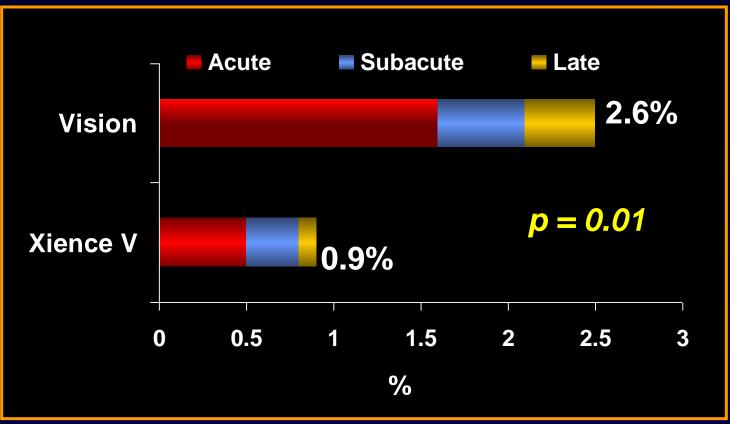
Prasugrel and Ticagrelor in STEMI TIMI Major Bleeding



Montalescot G et al. Lancet 2009;373:723-31

Steg PG et al. Circulation 2010;122:2131-

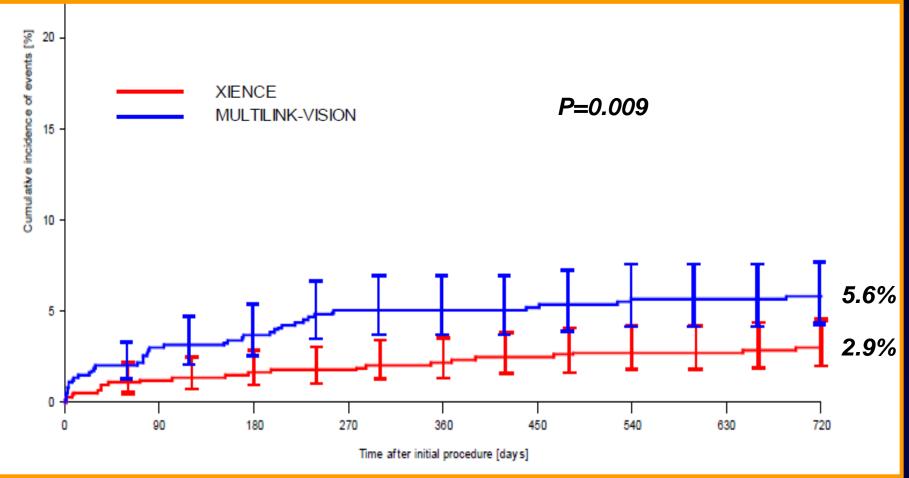
EXAMINATION Trial- Stent Thrombosis in New Era



Sabate M. et al. *Lancet.* 2012;380:1482-90.

EXAMINATION Trial: Stent thrombosis still occurs with new generation DES

1504 pts with STEMI undergoing PCI within 48° (85% primary PCI within 12°) randomized to Xience V EES vs. Vision BMS Stent thrombosis (Def/prob) within 1 year



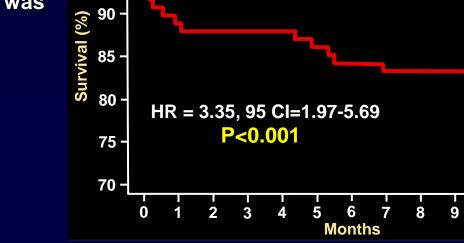
Sabate M et al. *Lancet.* 2012;380:1482-90.

EXAMINATION Trial: TLR still occurs with new generation DES

Target Lesion Revascularization

Sabate M et al. *Lancet.* 2012;380:1482-90.

5) No-reflow/Ischemia Reperfusion Injury


No-reflow developed in 108/1140 pts (9.5%)

	* From pre-PCI and 7-14 day 99mTc-sestamibi imaging			
	No reflow (n=108)	Normal flow (n=1032)	P value	
Salvage index (median, [IQR])*	0.34 [0.15, 0.49]	0.55 [0.29, 0.81]	<0.001	
Infarct size, 7-14d (median, [IQR])*	19% [10%, 34%]	9% [3%, 21%]	<0.001	
LVEF, 6 months	$48\%\pm13\%$	$54\%\pm14\%$	<0.001	

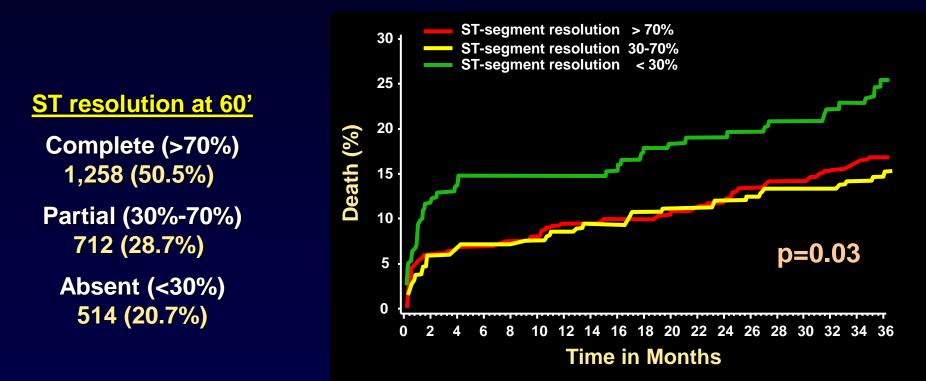
100 -

95

By multivariable analysis, no reflow was an independent predictor of 1-year mortality: HR [95%CI] = 1.91 [1.11 to 3.30]

Normal flow

No reflow

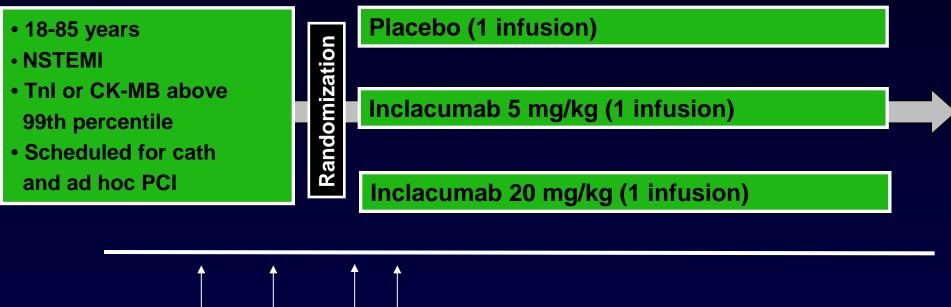

10

12

Ndrepepa G et al. Circ CV Int. 2010;3:27-33

Poor Reperfusion: Lack of ST-Segment Resolution as a Predictor of Death and MACE after Primary PCI in STEMI

The HORIZONS-AMI Trial 2,484 pts with interpretable baseline and 60-minute post-PCI ECGs

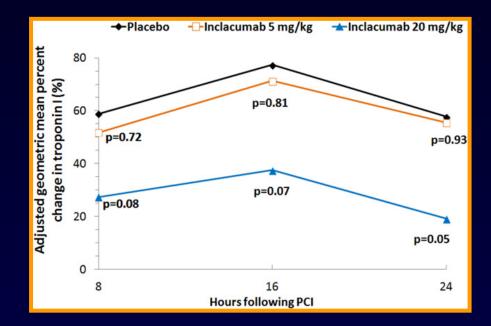


Farkouh ME et al. Circ Cardiovasc Interv. 2013;6:XX-XX.

The SELECT-ACS Trial

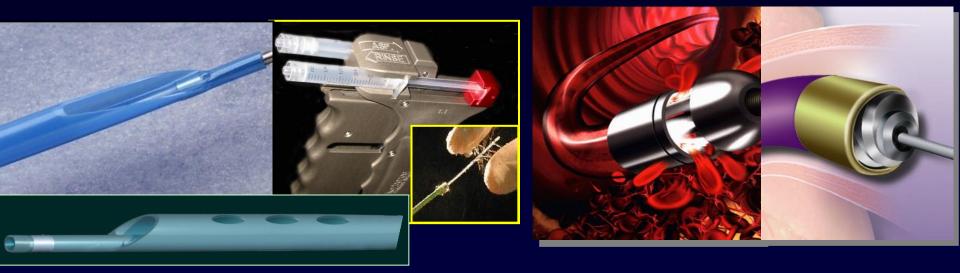
Effects of the P-selectin antagonist inclacumab on myocardial damage after PCI for NSTEMI

 Screening
 Coronary angio
Ad hoc PCI
 Tnl + CK-MB
8, 16, 24 hours
 Safety visits
30 and 120 days


 NSTEMI
 Study drug infusion
1-24 hrs pre-PCI
 1-24 hrs pre-PCI

The SELECT-ACS Trial

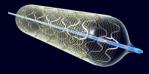
Percent Change in Troponin I Over Time

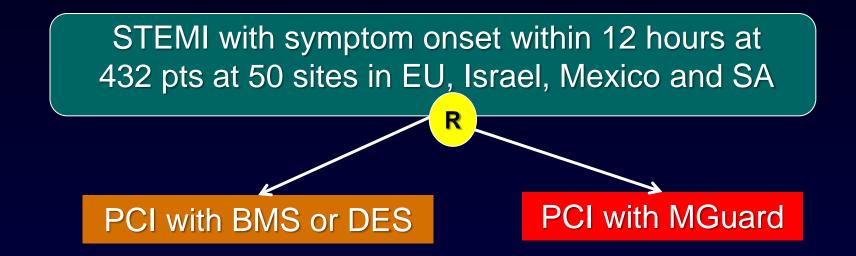


Mechanical Approaches to Thrombus

Thrombus aspiration

(Rinspirator, Pronto, Export, Rescue, Diver CE, etc.)


Thrombectomy (AngioJet, X-Sizer)


Embolic protection (GuardWire, FilterWire, Proxis, etc.)

<u>M</u>GUARD for <u>A</u>cute <u>ST</u> <u>E</u>levation<u>R</u>eperfusion The MASTER Trial

Follow-up: 30 days, 6 months, 1 year Primary endpoint: ST resolution at 60-90 minutes

Substudies: MRI: 60 pts (30 in each arm) at 3-5 days Angio FU: 60 pts in MGuard arm at 13 months

Stone GW et al. J Am Coll Cardiol . 2012;60:1975-84

MASTER trial: Angiographic Measures Post-PCI

	MGuard Stent (n = 217)	Control Stent (n = 216)	p Value
Device success*	208 (95.9)	214 (99.1)	0.03
Lesion success†	217 (100.0)	215 (99.5)	0.50
Angiographic success‡	199 (91.7)	178 (82.4)	0.004
Reference vessel diameter, mm§	3.20 (2.90-3.46)	3.16 (2.91-3.46)	0.99
Minimal luminal diameter, mm§			
In-stent	2.99 (2.73-3.25)	2.99 (2.69-3.31)	0.91
In-lesion	2.64 (2.40-2.96)	2.64 (2.36-2.95)	0.82
Diameter stenosis, %§			
In-stent	6.9 (4.2-10.5)	6.4 (3.9-10.3)	0.56
In-lesion	15.3 (9.6-21.2)	15.4 (10.8-21.2)	0.66
TIMI flow grade§			
0/1	4 (1.8)	12 (5.6)	0.01
2	14 (6.5)	25 (11.6)	0.06
3	199 (91.7)	179 (82.9)	0.006
Corrected TIMI frame count§	17.0 (12.0-23.0)	18.0 (13.0-22.0)	0.23
Myocardial blush grade§			
0/1	35 (16.1)	32 (14.8)	0.71
2	21 (9.7)	28/215 (13.0)	0.27
3	161 (74.2)	155/215 (72.1)	0.62
2/3	182 (83.9)	183 (84.7)	0.81
IPTE§	47 (21.7)	48/215 (22.3)	0.87

Stone GW et al. J Am Coll Cardiol. 2012;60:1975-84

"Need to clarify indications for and timing of non-infarct artery revascularization."

Class III harm-

"do not do non-infarct vessel PCI in a stable pt at time of primary PCI"

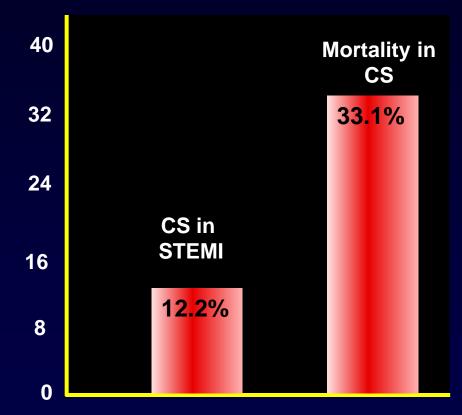
7) Prevention of Sudden Cardiac Death

- Prediction is imprecise

- Treatment decisions made on EF only

- Optimal therapy in the window after discharge not

established


O'Gara PT et al Circulation. 2013 ;127:e362-425.

8) Prevention of Heart Failure/Cardiogenic Shock

Frequency of CHF in STEMI HORIZON-AMI Trial

NYHA I NYHA 2 NYHA 3 NYHA 4 10% 7.5% 5% 2.5% 0% Baseline 2 years I months 6 months year

Cardiogenic shock

Anderson MI et al. AHA Scientific Sessions 2011

Kelly DJ et al. Am Heart J. 2011;162:663-70

8) Prevention of Heart Failure/Cardiogenic Shock

Intraaortic Balloon Pump in Cardiogenic (IABP)- SHOCK II Trial

Outcome	IABP (N=300)	Control (N = 298)	P Value	Relative Risk with IABP (95% CI)
	number (percent)			
Primary end point: all-cause mortality at 30 days	119 (39.7)	123 (41.3)	0.69	0.96 (0.79–1.17)
Reinfarction in hospital	9 (3.0)	4 (1.3)	0.16	2.24 (0.70–7.18)
Stent thrombosis in hospital	4 (1.3)	3 (1.0)	0.71	1.32 (0.30–5.87)
Stroke in hospital	2 (0.7)	5 (1.7)	0.28	0.40 (0.08–2.03)
Ischemic	2 (0.7)	4 (1.3)	0.45	0.49 (0.09–2.71)
Hemorrhagic	0	1 (0.3)	0.50	_
Peripheral ischemic complications requiring intervention in hospital	13 (4.3)	10 (3.4)	0.53	1.29 (0.58–2.90)
Bleeding in hospital*				
Life-threatening or severe	10 (3.3)	13 (4.4)	0.51	0.76 (0.34–1.72)
Moderate	52 (17.3)	49 (16.4)	0.77	1.05 (0.74–1.50)
Sepsis in hospital	47 (15.7)	61 (20.5)	0.15	0.77 (0.54–1.08)

Thiele H et al. N Engl J Med . 2012;367:1287-96.

8) Prevention of Heart Failure/Cardiogenic Shock

Intraaortic Balloon Pump in Cardiogenic (IABP)- SHOCK II Trial

Authors' Conclusion:

"The use of intraaortic balloon counterpulsation did not significantly reduce 30day mortality in patients with cardiogenic shock complicating acute myocardial infarction for whom an early revascularization strategy was planned."

Thiele H et al. *N Engl J Med* 2012;367:1287-96.

Editorialists' Conclusion:

"Given the concordance of data from the meta-analyses and the current trial, the data do not support the routine use of IABP in patients with acute myocardial infarction complicated by cardiogenic shock, and the level I guideline recommendation is now strongly challenged. Members of guideline committees and clinicians should take note of another example of a recommendation that is based on insufficient data."

Conclusions

We have a long way to go to optimize reperfusion in STEMI:

Major Limitations:

- Patient Education
- Transfer to dedicated PCI sites
- Antithrombotic therapy
- Catheter and fibrinolysis-induced reperfusion

(no-reflow and ischemia-reperfusion injury)

- Treatment of shock

What we can do immediately to optimize reperfusion:

Practice Guideline Based Medicine!

