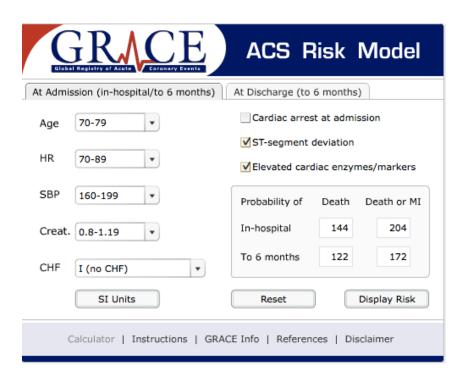
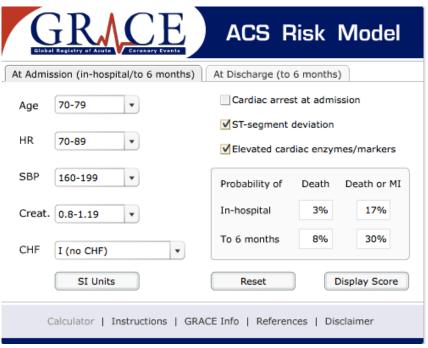

NSTE ACS

Timing of intervention

Timing of intervention in NSTE-ACS

What do the guidelines tell us?


Any need for immediate invasive approach?


No mortality benefit with an early invasive approach?

Putting trials in perspective

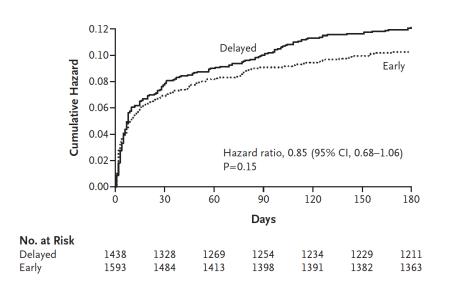
ESC guidelines: Risk stratify your ACS patients!

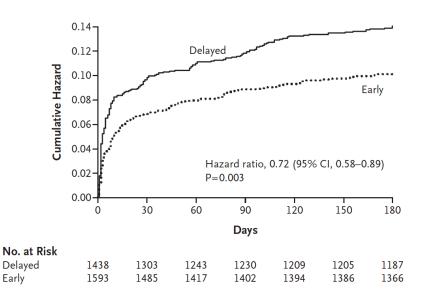
Recommendations for revascularization in NSTEMI

Specification Level	Class	Level
An invasive strategy is indicated in patients with: • GRACE score >140 or at least one high-risk criterion. • recurrent symptoms. • inducible ischaemia at stress test.	I	Α
An early invasive strategy (<24 h) is indicated in patients with GRACE score >140 or multiple other high-risk criteria.	1	Α
A late invasive strategy (within 72 h) is indicated in patients with GRACE score <140 or absence of multiple other high-risk criteria but with recurrent symptoms or stress-inducible ischaemia.	I	Α
Patients at very high ischaemic risk (refractory angina, with associated heart failure, arrhythmias or haemodynamic instability) should be considered for emergent coronary angiography (<2 h).	lla	С
An invasive strategy should not be performed in patients: at low overall risk at a particular high-risk for invasive diagnosis or intervention.	III	Α

Randomized clinical trials comparing different invasive treatment strategies

		Ear	ly invasive	/ conserva	tive	Early / late invasive					
Trials	FRISC	TRUCS	TIMI18	VINO	RITA-3	ICTUS	ELISA	ISAR- COOL	ОРТІМА	TIMACS	ABOARD
Patients	2456	148	2220	131	1810	1199	220	410	142	3031	352
Enrolment period	1996– 98	1997– 98	1997– 99	1998– 2000	1997– 2002	2001– 03	2000–01	2000–02	2004–07	2003–08	2006–08
Time to angio (h) ^a	96/408	48/120	22/79	6.2/1464	48/1020	23/283	6/50	2.4/86	0.5/25	14/50	1.2/21
Mean age (year)	66	62	62	66	62	62	63	70	62	65	65
Women, %	30	27	34	39	38	27	30	33	32	35	28
Diabetes, %	12	29	28	25	13	14	14	29	20	27	27
Troponin ↑ at inclusion, %	55	NA	54	100	75	67	68	67	46	77	74
Invasive (%) ^{a,b}	78/45	100/61	64/45	73/39	57/28	79/54	74/77	78/72	100/99	74/69	91/81
PCI/CABG (%) ^{a,b}	30/27	43/16	36/19	50/27	26/17	51/10	54/15	68/8	99/0	57/28	63/2
Primary outcome	D/MI 6 months	D/MI/H	D/MI/A 6 months	D/MI 6 months	D/MI I2 months	D/MI/A 12 months	Infarct size LDH	D/MI I months	D/MI/UR 30 days	D/MI/S 6 months	Troponin release
Endpoint met	+	_	+	+	+	_	+	+	_	_	-

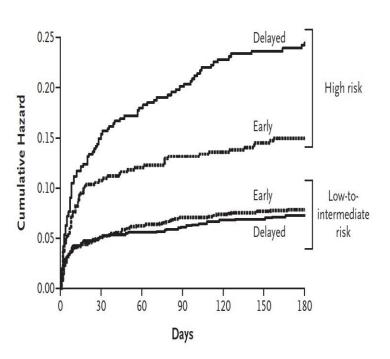




Early (≤24hrs) vs delayed (≥36hrs) coronary angiography in NSTEMI/UAP TIMACS trial

Death, MI, or stroke

Death, MI, or refractory ischemia


	Early Intervention (N = 1593)	Delayed Intervention (N = 1438)	P Value	
Coronary angiography (%)	97.6	95.7	0.003	
Median time (hr)	14	50	< 0.001	
Interquartile range (hr)	3–21	41-81		

Early (≤24hrs) vs delayed (≥36hrs) coronary angiography in NSTEMI/Unstable AP - TIMACS trial

Death, MI, or stroke hazard in high (GRACE>140) vs low risk (GRACE ≤140) patients

Characteristic	No. of Patients	Early	Delayed %	Hazard Ratio for Event (95% CI)	P Value for Interaction
Overall	3031	9.6	11.3	0.85 (0.68–1.06)	
Age				— į	0.46
<65 yr	1293	6.4	6.4	0.98 (0.64–1.52)	
≥65 yr	1736	12.2	14.6	0.83 (0.64–1.07)	
Sex					0.53
Female	1052	9.6	12.3	0.77 (0.53–1.12)	
Male	1976	9.6	10.7	0.89 (0.68–1.18)	
ST-segment deviation				-	0.71
No	1523	7.5	8.5	0.88 (0.62–1.26)	
Yes	1508	11.6	14.2	0.81 (0.61–1.07)	
Elevated cardiac marker					0.43
No	668	10.4	10.4	1.00 (0.62–1.60)	
Yes	2363	9.4	11.5	0.81 (0.63–1.04)	
GRACE score				i I	0.01
0-140	2070	7.6	6.7	1.12 (0.81–1.56)	
≥141	961	13.9	21.0	0.65 (0.48-0.89) 0.33 0.50 0.70 1.00 1.50 2.00 3.00 Early Better Delayed Better	

High risk situations needing emergency coronary angiography

Ongoing or recurrent ischaemia.

Dynamic spontaneous ST changes (>0.1 mV depression or transient elevation).

Deep ST depression in anterior leads V2-V4 indicating ongoing posterior transmural ischaemia.

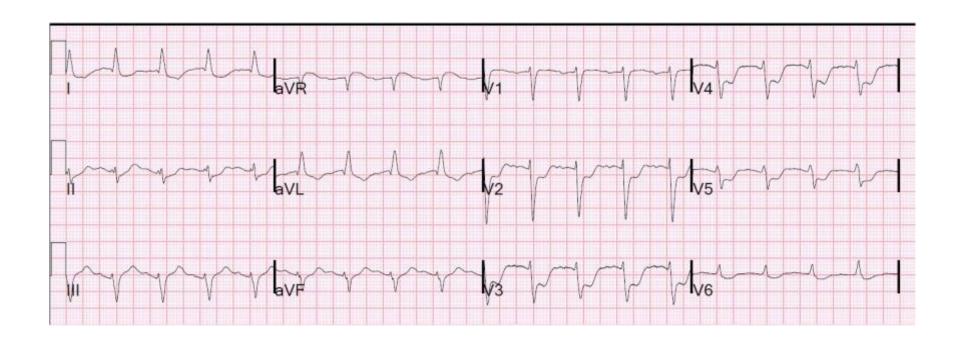
Haemodynamic instability.

Major ventricular arrhythmia.

High risk situations needing emergency coronary angiography

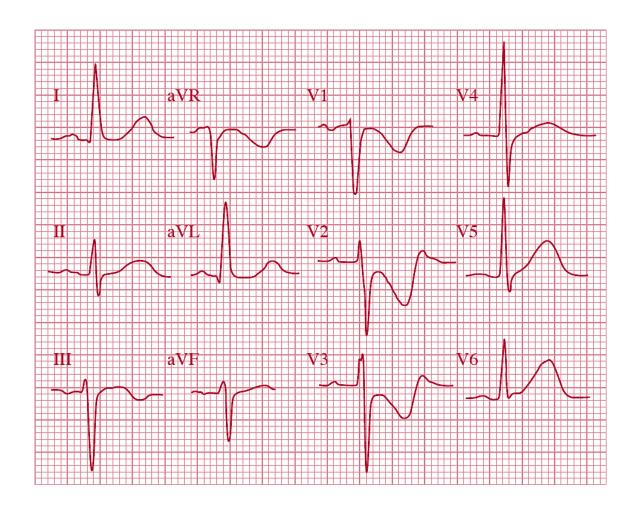
Ongoing or recurrent ischaemia.

Dynamic spontaneous ST changes (>0.1 mV depression or transient elevation).


Deep ST depression in anterior leads V2-V4 indicating ongoing posterior transmural ischaemia.

Haemodynamic instability.

Major ventricular arrhythmia.

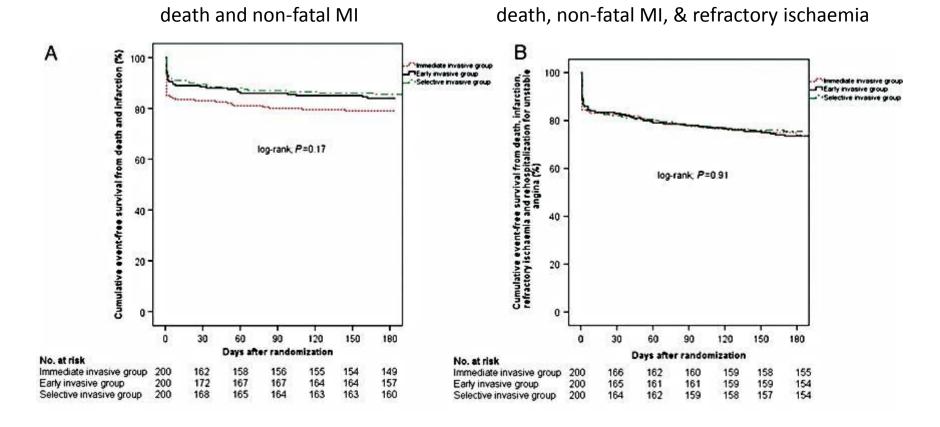


Do not miss a true posterior acute STEMI!

Do not miss a true posterior acute STEMI!

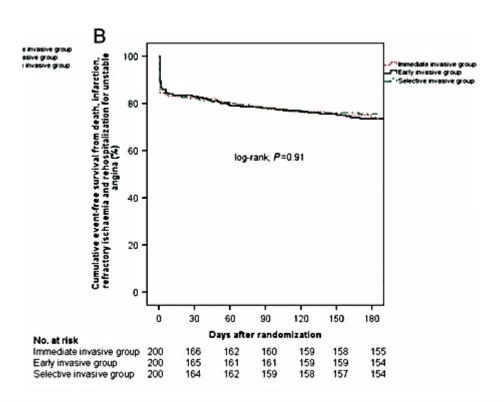
Timing of intervention in NSTE-ACS

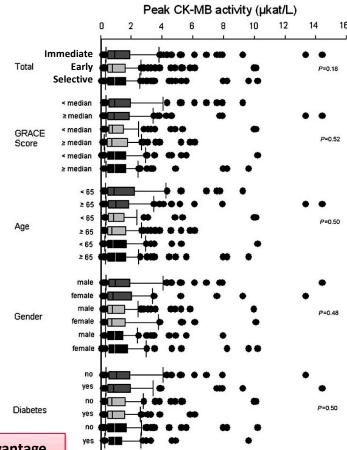
What do the guidelines tell us?


Any need for immediate invasive approach?

No mortality benefit with an early invasive approach?

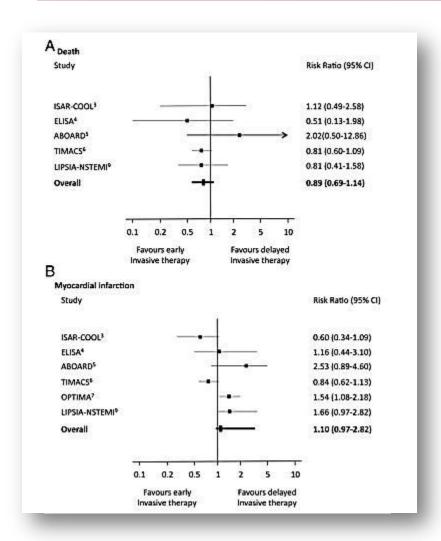
Putting trials in perspective


Immediate (<2 hrs) vs. early (10-48 hrs) vs. selective invasive approach (LIPSIA-NSTEMI Trial)

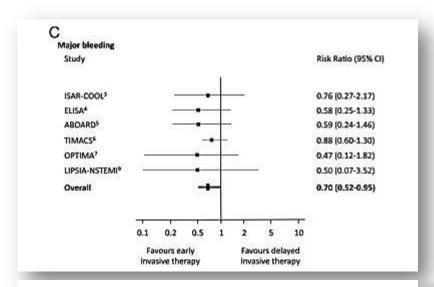


Immediate (<2 hrs) vs. early (10-48 hrs) vs. selective invasive approach (LIPSIA-NSTEMI Trial)

death, non-fatal MI, & refractory ischaemia



In NSTEMI patients, an immediate invasive approach does not offer an advantage over an early or a selective invasive approach with respect to large MI's as defined by peak CK-MB levels, which is supported by similar clinical outcomes.



Catheterization laboratories open 24 hours a day, every day: does stable NSTE ACS need the offer?

P.L. Sanchez & F. Fernandez-Aviles Eur Heart J (2012) 33, 1992–1995

...there is again a trend for an early invasive strategy to reduce mortality.

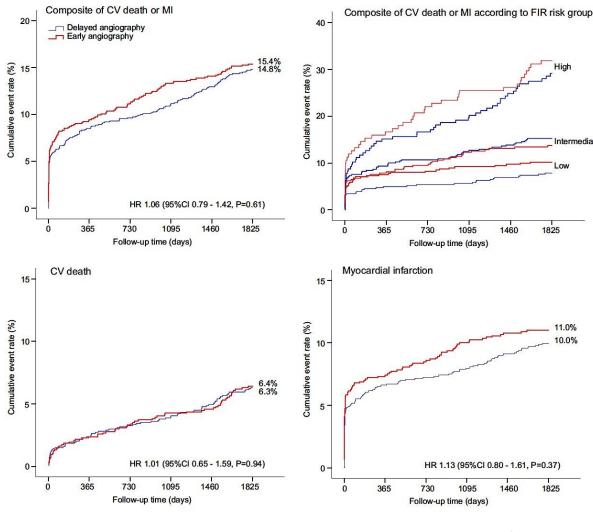
In contrast, as for MI, the analysis suggests increased risk with the early strategy, which can be explained by the periprocedural elevation of cardiac damage biomarkers, but this association did not reach the level of formal statistical significance.

Finally, major bleeding is, for the first time, shown to be significantly reduced by early intervention, suggesting that patients at high risk of bleeding may benefit from an early angiography.

Thus, we have yet to start to open our catheterization laboratory 24 h a day, every day, for 'stable' NST-ACS in order specifically to target fragile patients.

Timing of intervention in NSTE-ACS

What do the guidelines tell us?


Any need for immediate invasive approach?

No mortality benefit with an early invasive approach?

Putting trials in perspective

early (≤ 2 days) vs. delayed (3 to 5 days) angiography post hoc analysis FRISC-II + ICTUS + RITA-3

In patients presenting
with NSTE-ACS, early
angiography within 48 h
does not reduce the
incidence of 5-year death
or MI, when compared
with delayed angiography
within 48 to 120 h.

P Damman et al. J Am Coll Cardiol Intv 2012;5:191-9

Optimal Timing of Invasive Strategy in NSTE-ACS

ORs for MI early vs. a delayed invasive strategy

Randomized Trials							
Study or Subgroup	Early S	Early Strategy		Strategy	Weight, %	OR	OR
	Events, n	Total Patients, <i>n</i>	Events, n	Total Patients, n		D-L, Random (95% CI)	D-L, Random (95% CI)
ABOARD	16	175	8	177	12.8	2.13 (0.89-5.10)	 •
ELISA	7	109	6	111	10.6	1.20 (0.39-3.70)	· -
ISAR-COOL	12	203	21	207	14.0	0.56 (0.27-1.16)	
LIPSIA-NSTEMI	33	200	13	200	14.6	2.84 (1.45-5.58)	-
OPTIMA	44	73	27	69	14.6	2.36 (1.20-4.63)	-
TIMACS	76	1593	82	1438	17.5	0.83 (0.60-1.14)	-
Zhang et al, 2010 (16)	23	446	40	369	15.9	0.41 (0.24-0.69)	<u></u> ±-∴
Total (95% CI)	211	2799	197	2541	100	1.15 (0.65-2.01)	•
Heterogeneity: $\tau^2 = 0.44$; chi-square	= 32.98; <i>P</i>	< 0.001; /	² = 82%			8
Test for overall effect: Z	= 0.48 (<i>P</i> = 0).63)					0.01 0.1 1 10 100 Favors Early Favors Delayed

Observational Studies

Study or Subgroup	group Early Strategy			Strategy	Weight, % OR	OR					
	Events, n	Total Patients, n	Events, n	Total Patients, n		D-L, Random (95% CI)		D-L, Rai	ndom (9	5% CI)	
ACUITY	382	4937	301	2812	32.4	0.70 (0.60-0.82)			•		
CRUSADE	1366	45 548	313	10 804	34.5	1.04 (0.91-1.17)			ė.		
SYNERGY	404	3326	416	3026	33.1	0.87 (0.75-1.00)		Ĩ			
Total (95% CI)	2152	53 611	1030	16 642	100	0.86 (0.69-1.08)			•		
Heterogeneity: $\tau^2 = 0.0$	3; chi-square	= 14.66; P	< 0.001; /	² = 86%							
Test for overall effect:	Z = 1.32 (P = 0)	0.190)					1	1		T.	
							0.01	0.1	1	10	100

Optimal Timing of Invasive Strategy in NSTE-ACS

To definitively answer the question of a potential survival benefit with early compared with later intervention:

an RCT would require approximately 7807 patients per group (a total of 15 614 patients) to have 80% statistical power

and approximately 10 450 per group (a total of 20 900 patients) to have 90% statistical power

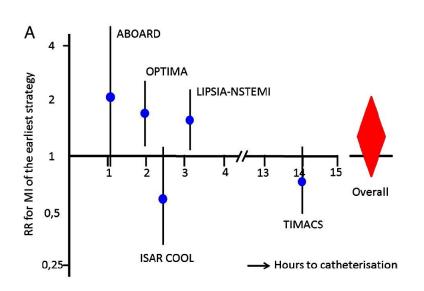
to detect the 30-day mortality decrease estimated in this analysis (OR, 0.80, translating into a 1% absolute difference in favor of early intervention, assuming the absolute mortality rate of 4.7% seen in the late intervention trial groups) with $\langle 2$ -sided of 0.05.

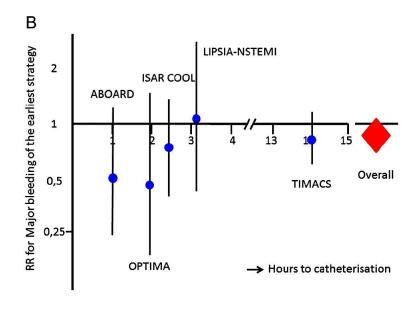
Timing of intervention in NSTE-ACS

What do the guidelines tell us?

Any need for immediate invasive approach?

No mortality benefit with an early invasive approach?

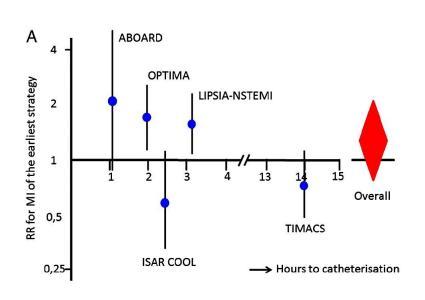

Putting trials in perspective

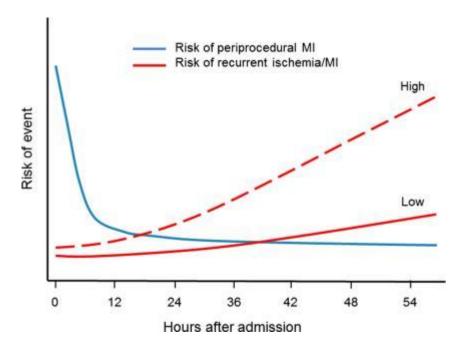


Timing of angiography in NSTEMI and risk of complications

Risk periprocedural MI

Risk major bleeding

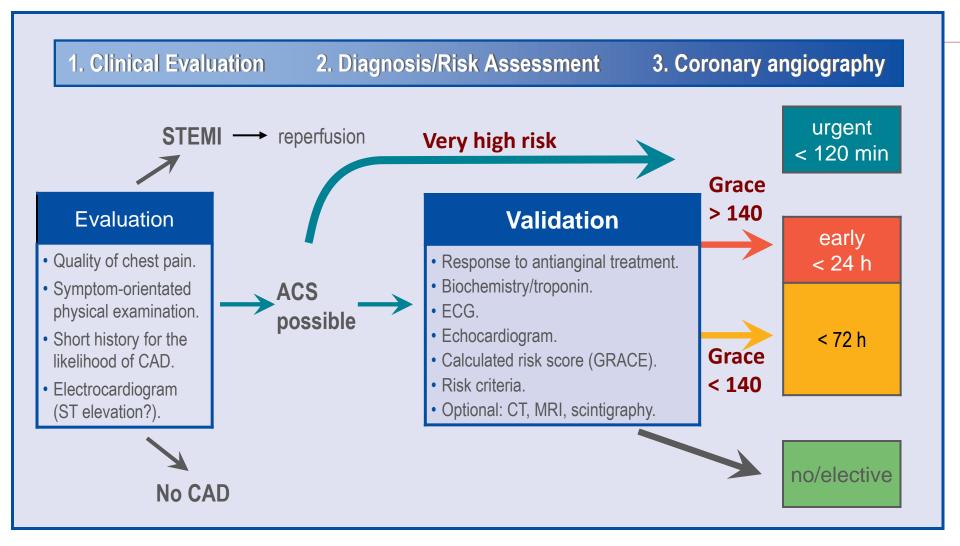




Timing of angiography in NSTEMI and risk of complications

Risk periprocedural MI

Risk recurrent ischemia/MI



Conclusion: Let's stick to the guidelines!

