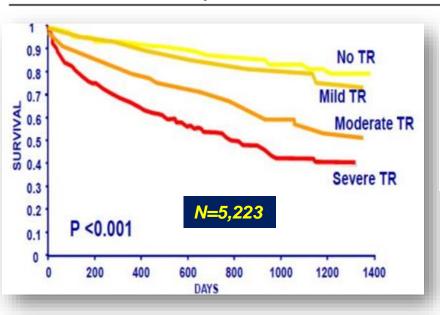
Tricuspid Regurgitation

Yan Topilsky Tel Aviv Medical Center

Natural History of Tricuspid Regurgitation


- Etiology based natural history trials
- Outcome with surgery
- Outcome with contemporary heart failure therapy
- The TRILUMINATE control arm
- The Pathophysiology and new Classification of Tricuspid Regurgitation

Impact of Tricuspid Regurgitation on Long-Term Survival

Jayant Nath, MD,* Elyse Foster, MD, FACC,† Paul A. Heidenreich, MD*

Palo Alto and San Francisco, California

Table 1. Clinical and Echocardiographic Features of Patients With Tricuspid Regurgitation

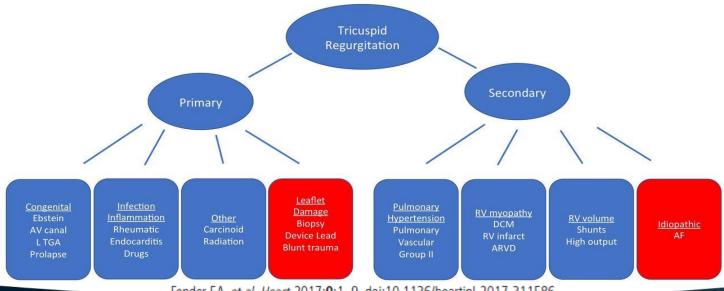
- *				
No TR	Mild TR	Moderate TR	Severe TR	p Value
(n = 600)	(n = 3,804)	(n = 620)	(n = 199)	
62.2 ± 12.8	66.0 ± 12.6	71.9 ± 11.7	71.9 ± 12.4	< 0.0001
57.3 ± 9.1	55.4 ± 11.6	47.1 ± 15.6	40.4 ± 17.2	< 0.0001
8%	11%	35%	66%	< 0.0001
3%	8%	30%	61%	< 0.0001
6%	11%	44%	76%	< 0.0001
	(n = 600) 62.2 ± 12.8 57.3 ± 9.1 8% 3%	(n = 600) (n = 3,804) 62.2 ± 12.8 66.0 ± 12.6 57.3 ± 9.1 55.4 ± 11.6 8% 11% 3% 8%	(n = 600) (n = 3,804) (n = 620) 62.2 ± 12.8 66.0 ± 12.6 71.9 ± 11.7 57.3 ± 9.1 55.4 ± 11.6 47.1 ± 15.6 8% 11% 35% 3% 8% 30%	(n = 600) (n = 3,804) (n = 620) (n = 199) 62.2 ± 12.8 66.0 ± 12.6 71.9 ± 11.7 71.9 ± 12.4 57.3 ± 9.1 55.4 ± 11.6 47.1 ± 15.6 40.4 ± 17.2 8% 11% 35% 66% 3% 8% 30% 61%

Data are presented as the mean value ± SD or percentage of patients.

IVC = inferior vena cava; LVEF = left ventricular ejection fraction; RV = right ventricular; TR = tricuspid regurgitation.

One year mortality with severe TR was ≈35%

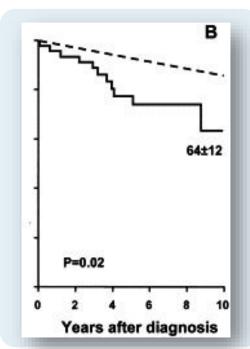
- Systemic co-morbidities were not recorded
- Only hospitalized patients
- Mixed etiologies of TR
- TR was not quantified
- Outdated heart failure therapy

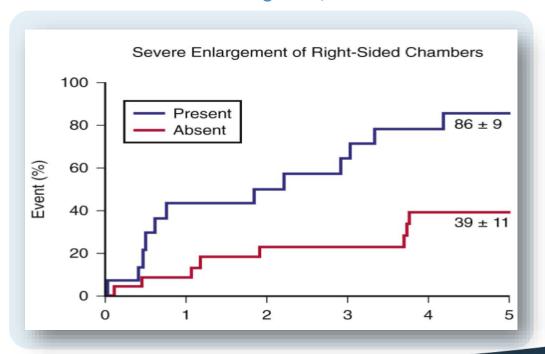

Thus, TR may be just a surrogate of mortality

Etiologic classification of Tricuspid Regurgitation

Isolated tricuspid regurgitation: outcomes and therapeutic interventions

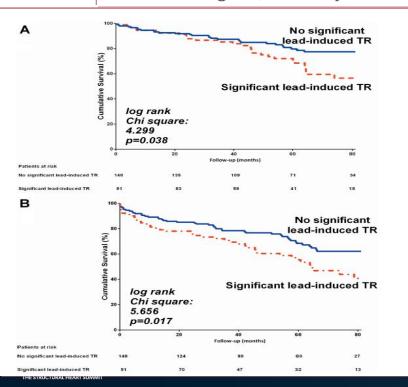
Erin A Fender, 1 Chad J Zack, 1,2 Rick A Nishimura 1




Outcome of untreated TR stratified by etiology Organic TR

Medical and surgical outcome of tricuspid regurgitation caused by flail leaflets

Messika-Zeitoun D et al. J Thorac Cardiovasc Surg 2004;128:296-302



Significant lead-induced tricuspid regurgitation is associated with poor prognosis at long-term follow-up

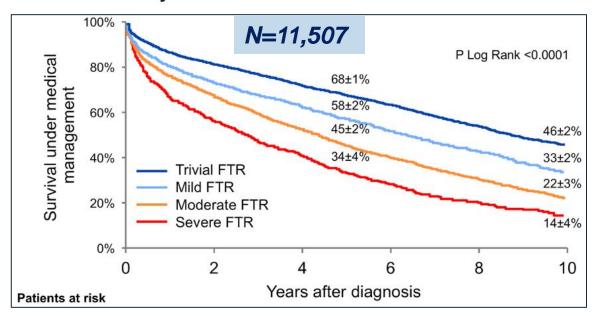
Ulas Höke,^{1,2} Dominique Auger,¹ Joep Thijssen,¹ Ron Wolterbeek,³ Enno T van der Velde,¹ Eduard R Holman,¹ Martin J Schalij,¹ Jeroen J Bax,¹ Victoria Delgado,¹ Nina Ajmone Marsan¹ Höke U, *et al. Heart* 2014;**100**:960–968.

Table 3	Univariate and multivariate	Cox regression surviva	I analysis for the priman	endpoint (all-cause mortality)
I able 3	Univariate and muttivariate	COX rediession surviva	i anaivsis ior uie briman	rengboint tail-cause mortality)

	Univariate	analysis		Multivaria	ite analysis	
Variables	HR	95% CI	p Value	HR	95% CI	p Valu
Age, per year	1.079	1.048 to 1.112	< 0.001	1.064	1.032 to 1.098	<0.001
Male sex	1.194	0.635 to 2.246	0.582			
Ischaemic aetiology	1.684	0.963 to 2.944	0.068			
Atrial fibrillation	1.373	0.823 to 2.290	0.224			
Diabetes	1.705	0.963 to 3.018	0.067			
ICD system (versus PM)	0.897	0.507 to 1.589	0.710			
Percentage of pacing, per %	1.007	1.002 to 1.013	0.006	1.008	1.002 to 1.015	0.008
LVEDV, per mL	1.005	1.002 to 1.009	0.001			
LVESV, per mL	1.007	1.004 to 1.011	< 0.001			
LVEF, per %	0.968	0.946 to 0.990	0.005	0.973	0.947 to 0.999	0.041
Mitral regurgitation grade 0 (reference group)			0.028			0.510
Mitral regurgitation grade 1 (vs reference group)	0.449	0.219 to 0.922		1.185	0.522 to 2.691	
Mitral regurgitation grade 2 (vs reference group)	0.840	0.409 to 1.727		1.445	0.626 to 3.336	
Mitral regurgitation grade 3 (vs reference group)	1.815	0.737 to 4.468		2.067	0.695 to 6.146	
Mitral regurgitation grade 4 (vs reference group)	2.695	0.632 to 11.483		2.634	0.662 to 10.488	
RV end-diastolic area, per mm ²	1.069	1.025 to 1.114	0.002			
RV fractional area change, per %	0.975	0.953 to 0.996	0.022			
TAPSE, per mm	0.914	0.856 to 0.976	0.007	0.974	0.910 to 1.042	0.447
Right atrial diameter, per mm	1.412	1.071 to 1.861	0.014			
Tricuspid annular diameter, per mm	1.748	1.325 to 2.306	< 0.001			
sPAP, per mm Hg	1.046	1.029 to 1.063	< 0.001			
Significant lead-induced TR	1.687	1.023 to 2.780	0.040	1.749	1.008 to 3.035	0.04

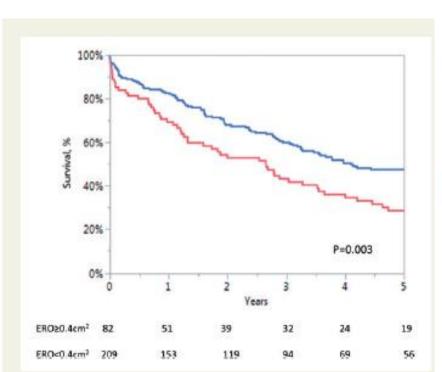
Bold values are statistically significant.

ICD, implantable cardioverter-defibrillator; LVEDV, left ventricular end-diastolic volume; LVEF, left ventricular EF; LVESV, left ventricular end-systolic volume; PM, permanent pacemaker; sPAP, systolic pulmonary arterial pressure; TAPSE, tricuspid annular plane systolic excursion; TR, tricuspid regurgitation.

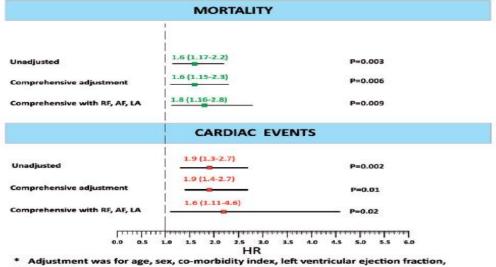

Outcome of untreated TR stratified by etiology Functional TR

ORIGINAL RESEARCH ARTICLE

Excess Mortality Associated With Functional Tricuspid Regurgitation Complicating Heart Failure With Reduced Ejection Fraction



Giovanni Benfari, MD Clemence Antoine, MD Wayne L. Miller, MD, PhD Prabin Thapa, BS Yan Topilsky, MD Andrea Rossi, MD Hector I. Michelena, MD Sorin Pislaru, MD Maurice Enriquez-Sarano,

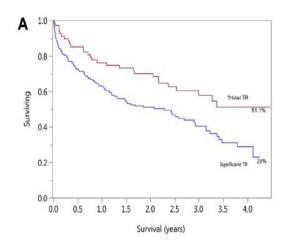


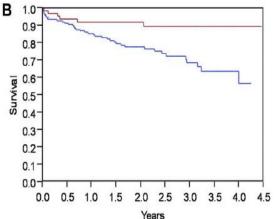
Clinical presentation and outcome of tricuspid regurgitation in patients with systolic dysfunction

Yan Topilsky¹, Jose Medina Inojosa², Giovanni Benfari², Ori Vaturi², Simon Maltais², Hector Michelena², Sunil Mankad², and Maurice Enriquez-Sarano²*

Impact of severe regurgitation (effective-regurgitant-orifice ≥ 0.4 cm2), compared to lesser degree of TR, on mortality and cardiovascular events risk after the diagnosis of tricuspid regurgitation in patients with systolic dysfunction.

* Adjustment was for age, sex, co-morbidity index, left ventricular ejection fraction, right ventricular dysfunction ≥ moderate and right ventricular systolic pressure.


** Adjustment was for age, sex, co-morbidity index, left ventricular ejection fraction, right ventricular dysfunction ≥ moderate, renal failure(RF), atrial fibrillation(AF), LA size and right ventricular systolic pressure.


Clinical Outcome of Isolated Tricuspid Regurgitation in Patients with Preserved Left Ventricular Ejection Fraction and Pulmonary Hypertension

Nir Bar, MD, Lorin Arie Schwartz, MD, Simon Biner, MD, Galit Aviram, MD, Meirav Ingbir, MD, Ido Nachmany, MD, Gilad Margolis, MD, Ben Sadeh, MD, Rami Barashi, MD, Gad Keren, MD, and Yan Topilsky, MD, Tel Aviv, Israel

Journal of the American Society of Echocardiography

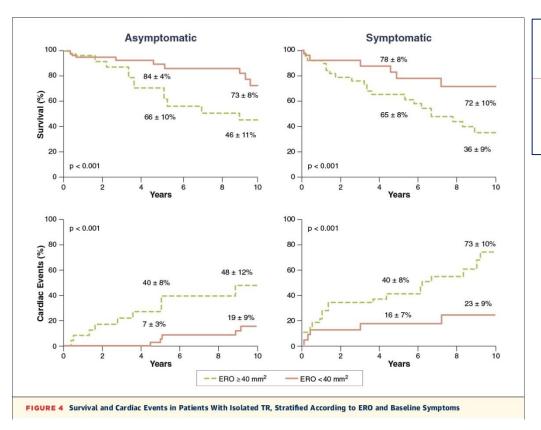

■ 2017

Table 4 Multivariate analysis for associates for survival		
	HR	P value model
At least moderate to severe TR for mortality		
Univariate analysis	1.8	.004
Adjusted for all clinical parameters*	1.8	<.0001
Adjusted for tricuspid annulus alone	1.7	.005
Adjusted for TAPSE alone	1.7	.0007
Adjusted for echocardiographic parameters [†]	1.6	<.0001
Adjusted for all echocardiographic [†] and clinical* parameters	1.5	<.0001
VC for mortality		
Univariate analysis	1.08	.001
Adjusted for tricuspid annulus alone	1.07	.001
Adjusted for TAPSE alone	1.08	<.0001
Adjusted for all clinical parameters*	1.07	.0002
Adjusted for all echocardiographic parameters [†]	1.06	<.0001
Adjusted for all echocardiographic [†] and clinical* parameters	1.06	<.0001

ORIGINAL RESEARCH

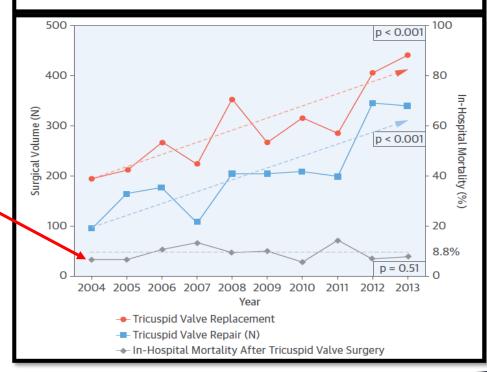
Clinical Outcome of Isolated Tricuspid Regurgitation

Yan Topilsky, MD,* Vujsile T. Nkono, MD,† Ori Vatury, MD,† Hector L. Michelena, MD,† Thierry Letourneau, MD,† Rakesh M, Suri, MD, DPmat,† Sorin Pislaru, MD,† Soon Park, MD,† Douglas W. Mahoney, MSc.(Simon Biner, MD,* Maurice Enriquez-Sanno, MD)

Topilsky; JACC, 2014

Outcome of TR with surgery

Isolated Tricuspid Surgery

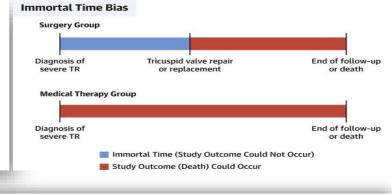

- 290/year in 2004 (67% replacement)
- 780/year in 2013 (57% replacement)

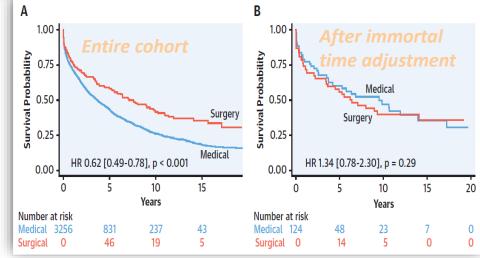
The database represents ≈20% of hospital admissions in the USA (approximately 1000 hospitals

- Highest mortality (10.9%) for TV replacements
- Long hospital stay (median 11 days)
- 26% pacemakers

National Trends and Outcomes in Isolated Tricuspid Valve Surgery

Chad J. Zack, MD,^a Erin A. Fender, MD,^a Pranav Chandrashekar, MBBS,^a Yogesh N.V. Reddy, MBBS,^a Courtney E. Bennett, DO,^{a,b} John M. Stulak, MD,^c Virginia M. Miller, PhD,^{c,d} Rick A. Nishimura, MD^a

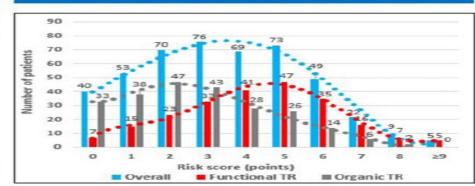

Surgery Does Not Improve Survival in Patients With Isolated Severe Tricuspid Regurgitation



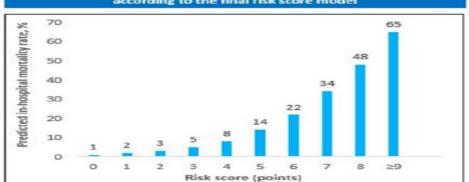
Andrea L. Axtell, MD, MPH,^{a,b} Vijeta Bhambhani, MS, MPH,^c Philicia Moonsamy, MD,^{a,d} Emma W. Healy, BS,^c Michael H. Picard, MD,^c Thoralf M. Sundt III, MD,^a Jason H. Wasfy, MD, MPнп.^c

- 3,276 patients with severe TR
- No difference in long-term survival between surgery and medical therapy

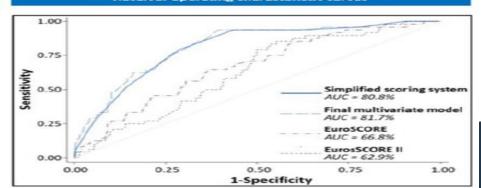
Surgical mortality was adversely affected by delayed operative intervention, especially until severe RV failure, or end-organ damage developed


TRI-SCORE: a new risk score for in-hospital mortality prediction after isolated tricuspid valve surgery

Julien Dreyfus (1) 1, 1, 1, Etienne Audureau^{2,3,†}, Yohann Bohbot^{4,5},


Risk factors and	scoring system
for in-hospital mortality after is	olated tricuspid valve surgery

Risk factors (final model from multivariate analysis)	Scoring
Age ≥ 70 years	1
NYHA functional class III-IV	1
Right-sided heart failure signs	2
Daily dose of furosemide ≥ 125mg	2
Glomerular filtration rate < 30 ml/min	2
Elevated total bilirubin	2
Left ventricular ejection fraction < 60%	1
Moderate/severe right ventricular dysfunction	1
Total	12


Number of patients presenting with each score value and trends

Predicted in-hospital mortality rate according to the final risk score model

Receiver operating characteristic curves

Outcome of TR with contemporary heart failure therapy

Tricuspid regurgitation and long-term clinical outcomes

Ehud Chorin^{1†}, Zach Rozenbaum^{1†}, Yan Topilsky¹, Maayan Konigstein¹, Tomer Ziv-Baran², Eyal Richert¹, Gad Keren¹, and Shmuel Banai¹*

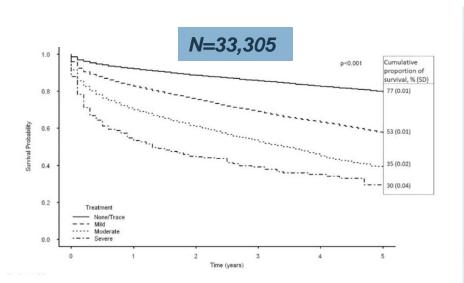
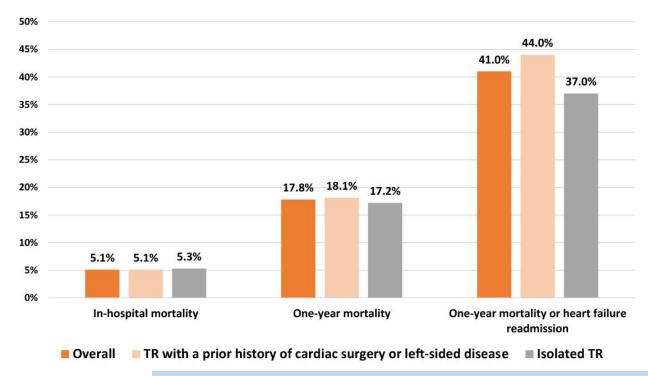


Table 5 Outcomes of sample of hospitalized patients according to TR grade compared to none/minimal adjusted for TAPSE


Outcomes	TR	%	Crude HR (95% CI)	P-value	Adj HR ^a (95% CI) n = 5237	P-value
1-year mortality	None/trace	12.4	1		1	
	Mild	20.1	1.7 (1.58-1.84)	< 0.001	1.02 (0.85-1.23)	0.823
	Moderate	33.7	3.13 (2.87-3.42)	< 0.001	1.22 (0.97-1.54)	0.086
	Severe	51.6	5.44 (4.5-6.58)	<0.001	1.89 (1.29-2.79)	0.001
Overall mortality	None/trace	23.3	1		1	
	Mild	38.7	1.82 (1.72-1.93)	< 0.001	1 (0.87-1.15)	0.985
	Moderate	53.1	3.03 (2.83-3.25)	<0.001	1.07 (0.89-1.29)	0.447
	Severe	66.4	4.58 (3.89-5.41)	<0.001	1.41 (1.01-1.98)	0.046
Heart failure re-admission	None/trace	2.9	1	1	1	
	Mild	6.5	2.29 (1.98-2.65)	< 0.001	1.48 (1.03-2.12)	0.034
	Moderate	10.6	3.94 (3.33-4.65)	< 0.001	1.65 (1.08-2.52)	0.021
	Severe	20.2	7.93 (5.82-10.82)	<0.001	3.52 (1.92-6.47)	<0.001
30-day mortality	None/trace	3.7	1		1	
	Mild	7.0	1.98 (1.73-2.28)	<0.001	1.53 (1.04-2.24)	0.032
	Moderate	13.9	4.23 (3.63-4.93)	< 0.001	2.61 (1.68-4.05)	< 0.001
	Severe	18.8	6.08 (4.29-8.61)	< 0.001	3.96 (1.94-8.07)	< 0.001

^aAge, gender, echocardiographic parameters (diastolic dysfunction, left atrium volume index, E/e, stroke volume, systolic pulmonary artery pressure, ejection fraction, aortic insufficiency, aortic stenosis, mitral stenosis, m

TR ≥ Moderate is associated with poor survival, regardless of age, echo parameters and comorbidities

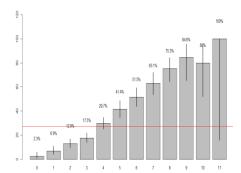
Event rates in patients with tricuspid regurgitation managed conservatively in a nationwide cohort from France

A Risk Model for 10-Year All-Cause Mortality in patients with TR

TRIO Score Parameters	Score		All Cause	10-Yr Dea	a+h	
Age 70-79 years ≥80 years	1 2	0 to 3	All-Cause	10-Yr Dea	atri	
Male sex	1					
Creatinine of ≥2 ml/dl	2	4 to 6				
Congestive heart failure	2					
Lung disease	1	7 to 10				
Aspartate aminotransferase of ≥40 U/L	1					
Heart rate 90 bpm or higher	1	0	20	40	60	8
Severe TR	1		All-Cau	se 10-Yr Dea	ith	
Total	10					

B Risk Model for 1-Year All-Cause Mortality in Isolated Secondary TR

Lara-Breitinger KM. et al. Mayo Clin Proc. 2022 Aug;97(8):1449-1461

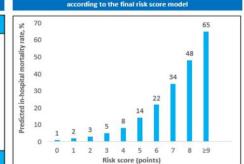

Parameter	Score			All-Cause	1-Yr Dea	th	
Age 65-74 yrs 75+ yrs	1 2	0					
Myocardial infarction	1	2					
Peripheral vascular disease	1	3					
Chronic lung disease	1	4					
Chronic kidney disease (creatinine >1.4 mg/dL)	1	5					
Loop diuretic use	1	6					
Anemia (Hgb <10 g/dL)	1	7					
Thromocytopenia (platelet <15 k/µL)	1				8.1		
INR >1.5	1	8					
Albumin <3.0 g/dL	2	9					
RV Systolic Fx Mildly impaired Moderately impaired Severely impaired	1 2 3	10 11 12 to 16					
Right ventricular systolic pressure >50 mmHg	1		0	20	40	60	80
TOTAL	16			All-Caus	se 1-Yr Dea	th	
Wang, TKM. et al. J Am Coll Cardiol Img. 2022:1	5(5):731	744					

CRF* NEW YORK VALVES THE STRUCTURAL HEART SUMMIT

Hochstadt A, Topilsky Y. et al, Eur Heart J Open. 2022 Oct 14;2(6):0eaco67.

Risk Score for 1 year mortality based in patients with ≥Moderate-severe TR

Multivariate predictors
Age≥65 years (1 points)
Age≥75 years (2 points)
Age≥85 years (3 points)
EF≤30% (1 point)
SPAP≥4ommHg (1
points)
GFR≤30 (2 points)
GFR≤20 (4 points)
RV dysfunction (1 point)
Liver disease (2 points)



Dreyfus et al. TRISCORE cohort. Eur Heart J, Volume 43, Issue 7, 14 February 2022

All consecutive adult patients who underwent an isolated tricuspid valve surgery for severe tricuspid regurgitation at 12 French centers between 2007 and 2017
(N=466)

Risk factors and scoring system for in-hospital mortality after isolated tricuspid valve surgery

Risk factors (final model from multivariate analysis)	Scoring
Age ≥ 70 years	1
NYHA functional class III-IV	1
Right-sided heart failure signs	2
Daily dose of furosemide ≥ 125mg	2
Glomerular filtration rate < 30 ml/min	2
Elevated total bilirubin	2
Left ventricular ejection fraction < 60%	1
Moderate/severe right ventricular dysfunction	1
Total	12

Predicted in-hospital mortality rate

Trans-catheter Repair for Patients with Tricuspid Regurgitation

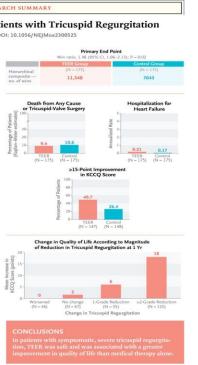
For patients with severe tricuspid regurgitation, transcathere edge-to-edge repair (TEBR) has emerged as a safe and potentially effective treatment option. This per-cutaneous, transvenous procedure deploys one or more clips to hold the tricuspid-valve leaflets together, thereby reducing regurgitation without the need for cardiac surgery. However, the clinical benefit of tricuspid TEBR as compared with medical therapy alone is uncertain.

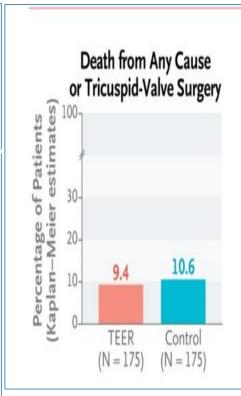
LINICAL TRU

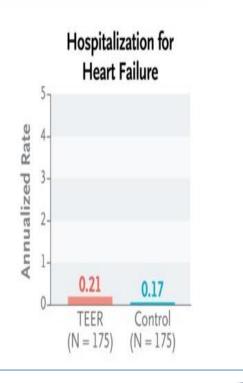
Design: An international, open-label, randomized, controlled trial evaluated the effectiveness and safety of TEER as compared with medical therapy alone in patients with severe, symptomatic tricuspid regurgitation who were at intermediate or greater surgical risk.

Intervention: 350 patients were assigned to either TEER or medical therapy (control). The primary end point was a hierarchical composite that included death from any cause or tricuspid-valve surgery; hospitalization for heart failure; and an improvement in quality of life as measured with the Kansas City Cardiomyopathy Questionnaire (KCCQ) (215-point improvement at 1 year).

RESULT


Effectiveness: During 1 year of follow-up, the primary outcome favored the TEER group over the control group. The difference between the groups was largely attributable to a significantly greater mean improvement in the quality-of-life score in the TEER group.


Safety: 98% of patients who underwent TEER were free from major adverse events at 30 days, a finding that exceeded the performance goal of the trial (90%).


LIMITATIONS AND REMAINING QUESTIONS

- The open-label nature of the trial could have introduced bias into the interpretation of clinical outcomes.
- The trial was conducted during the Covid-19 pandemic, which could have affected outcomes.
- The results may not apply to patients with hemodynamic or anatomical findings that do not meet the entry criteria used in the trial.

Links: Full Article | NEJM Quick Take | Editorial

Copyright © 2023 Massachusetts Medical Society

Trans-catheter Repair for Patients with Tricuspid Regurgitation

STATISTICAL ANALYSIS

Under the assumption of a 1-year incidence of death or tricuspid-valve surgery of 20% in the control group

Possible reasons for the relatively good outcome in the TRILUMINATE control arm

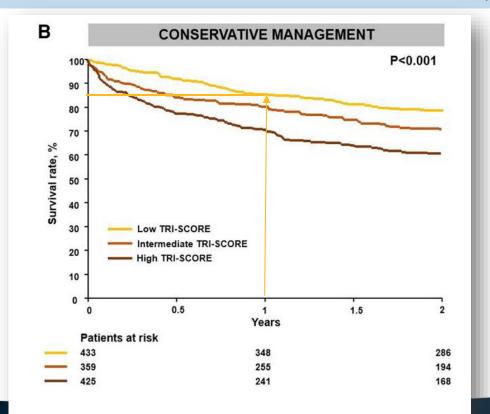
Selection "clinical bias"- low clinical risk?

Optimal medical management?

Selection "anatomic" bias- predilection for "atrial functional"?

Selection clinical bias?

Enrollment, Randomization, and Follow-up


Patients were eligible:

- Tricuspid regurgitation confirmed as severe
- Symptomatic (NYHA II, III, or IVa)
- Pulmonary artery systolic pressure <70 mm Hg
- No other cardiovascular conditions (severe AS or MR)
- Intermediate or greater surgical risk

Characteristic	TEER Group (N=175)	Control Group (N=175)
Age — yr	78 N+7 4	77 8+7 7
Female sex — no. (%)	98 (56 0)	94 (53 7)
New York Heart Association class III or IV — no. (%)	104 (59.4)	97 (55.4)
Atrial fibrillation — no. (%)	153 (87.4)	162 (92.6)
Kidney disease — no. (%)	62 (35.4)	62 (35.4)
Liver disease — no. (%)	11 (6.3)	16 (9.1)
Chronic obstructive pulmonary disease — no. (%)	19 (10.9)	24 (13.7)
Glomerular filtration rate — ml/min/1.73 m²**	54.1±20.4	56.9±20.0
Medications — no. (%)		
β -receptor antagonist	114 (65.1)	115 (65.7)
ACE-I, ARB, or ARNI	68 (38.9)	66 (37.7)
Vasodilator	14 (8.0)	17 (9.7)
Diuretic	152 (86.9)	161 (92.0)

Figure 1b Survival rate according to the TRI-SCORE in the conservative group The average patient in TRILUMINATE had TRISCORE 2-3 (Low)

Optimal medical management

Optimal medical management

In the Triluminate trial introduction the medical therapy for tricuspid regurgitation is "dismissed" as:

"Largely limited to diuretic agents, which can lead to abatement of symptoms in some patients".

A gross under appreciation of the required expertise

Tricuspid Regurgitation Management for Heart Failure

Rebecca T. Hahn, MD, Michael I. Brener, MD, MS, Zachary L. Cox, PHARMD, Sean Pinney, MD, JoAnn Lindenfeld, MD

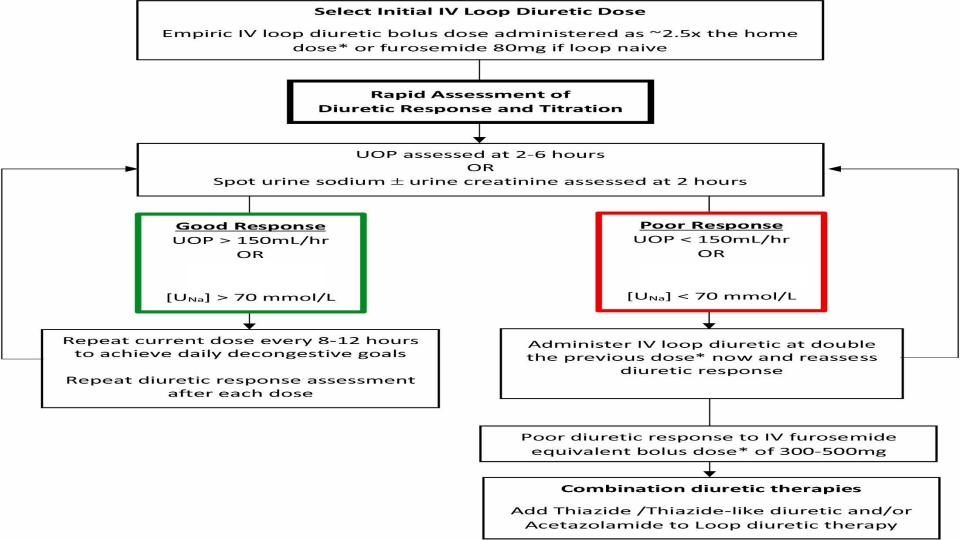
Tricuspid Regurgitation Management for Heart Failure

Rebecca T. Hahn, MD, Michael I. Brener, MD, MS, Zachary L. Cox, PHARMD, Sean Pinney, MD, JoAnn Lindenfeld, MD

DIURETICS

Significant TR leads to diuretic resistance through altered oral diuretic intestinal absorption and intra-renal venous congestion

Optimal diuretic therapy may need intermittent intravenous treatment.


Loop diuretics are the primary but not the only decongestive therapy

SGLT-2 inhibitors, mineralocorticoid antagonists.

The ideal RV preload in TR is a normal RA pressure (reduces septal shifting which limits both RV and LV contractility/compliance)

Normalizing RA pressure may require tolerating mild to moderate increases in serum creatinine.

Tricuspid Regurgitation Management for Heart Failure

Rebecca T. Hahn, MD, Michael I. Brener, MD, MS, Zachary L. Cox, PHARMD, Sean Pinney, MD, JoAnn Lindenfeld, MD

OTHER MEDICAL THERAPY

The LV contributes 20% to 40% of RV stroke volume from systolic ventricular interdependence and septal contraction.

Improvement in LV function may directly improve RV function, as well as indirectly by reducing mitral regurgitation, lowering LA/LV filling pressures, improving pulmonary vascular compliance, and reducing RV afterload

- Patients with TR and left sided HF (HFrEF, HFmrEF, HFpEF) should receive guideline-directed medical therapy.
- Limited data suggests beta-blockers, *aldosterone system inhibitors* and SGLT2 inhibitors may improve RV function and TR (conflicting data for renin *angiotensin system inhibitors*)
- Digoxin may be useful in patients with secondary ventricular TR.
- Pulmonary vasodilators are indicated in pre-capillary (group 1) pulmonary arterial hypertension.

Medical management in the TRILUMINATE Trial

Supplementary

- Follow-up at 1, 6, and 12 months with ECG, Labs, Echo, 6 minute walk.
- Control subjects seen by HF specialist.
- Neuro-hormonal antagonists were not changed (GDMT)
- Diuretic therapy was individually tailored throughout FU

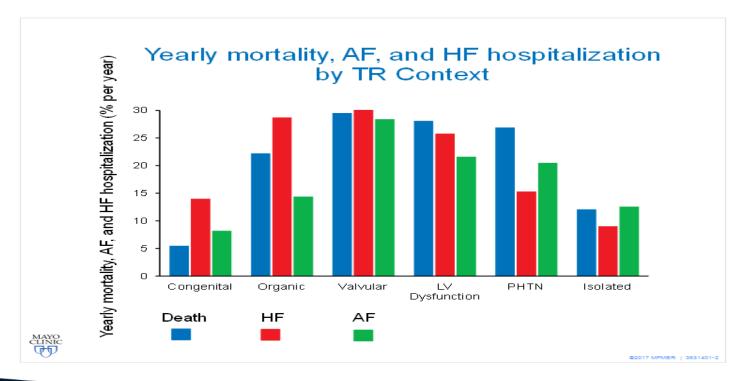
Selection "anatomic" bias- "atrial functional"?

Supplementary Appendix Page 14 Anatomic eligibility for TriClip

Echocardiographic images were reviewed to determine if anatomically suitable for the TriClip

Only patients judged to have a high likelihood of achieving ≤moderate residual TR after TEER were randomized to either TEER or Medical therapy

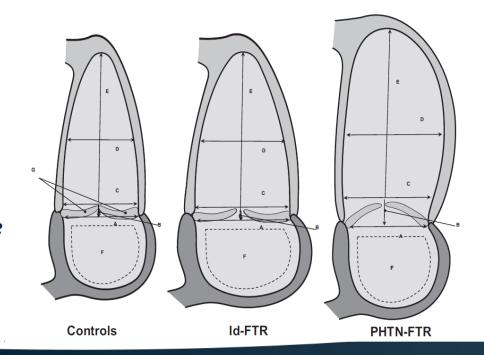
Optimal TEER candidates


Table 3. Anatomical criteria for device selection.

Strategy	Favourable anatomy	Feasible anatomy	Unfavourable anatomy
Leaflet approximation	Small septolateral gap ≤7 mm ¹⁰ Anteroseptal jet location Confined prolapse or flail Trileaflet morphology	Septolateral coaptation gap >7 but ≤8.5 mm ⁶⁵ Posteroseptal jet location Non-trileaflet morphology Incidental CIED RV lead (i.e., without leaflet impingement)	Large septolateral coaptation gap >8.5 mm ⁶⁵ Leaflet thickening/shortening (rheumatic, carcinoid)/perforation Dense chordae with marked leaflet tethering Anteroposterior jet location Poor echocardiographic leaflet visualisation CIED RV lead leaflet impingement Unfavourable device angle of approach

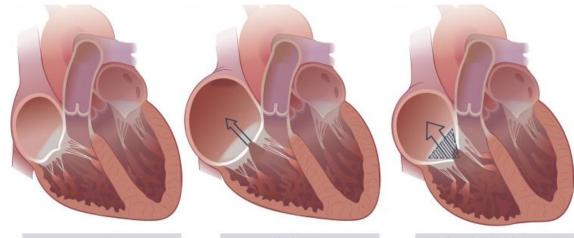
Burden of Tricuspid Regurgitation in Patients Diagnosed in the Community Setting

Yan Topilsky, MD,^a Simon Maltais, MD,^b Jose Medina Inojosa, MD,^c Didem Oguz, MD,^c Hector Michelena, MD,^c Joseph Maalouf, MD,^c Douglas W. Mahoney, MSc,^d Maurice Enriquez-Sarano, MD^c


New Classification of Tricuspid Regurgitation

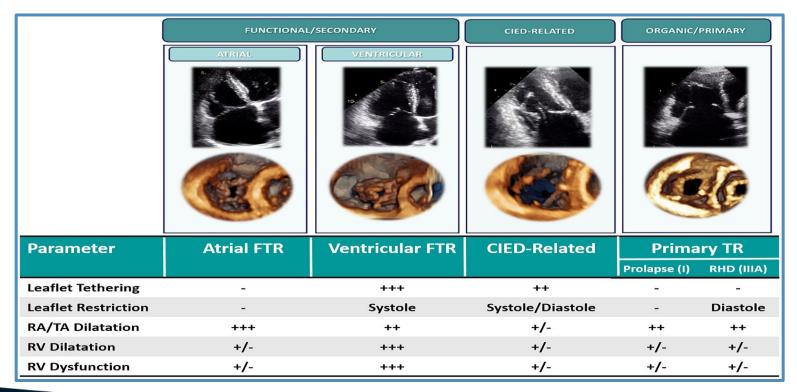
Functional Tricuspid Regurgitation

- RV lengthening (elliptical RV)
- Less annular dilation
- TV leaflet tethering and tenting


Wide TV annulus and RV base

Functional Tricuspid Regurgitation

- Right ventricular remodeling
 - Papillary muscle displacement
 - Leaflet tenting and tethering
- Annulus dilatation



Normal

TA Dilation

Papillary Muscle Displacement

Eur Heart J Cardiovasc Imaging, Volume 23, Issue 7, July 2022, Pages 913–929 Current Classification

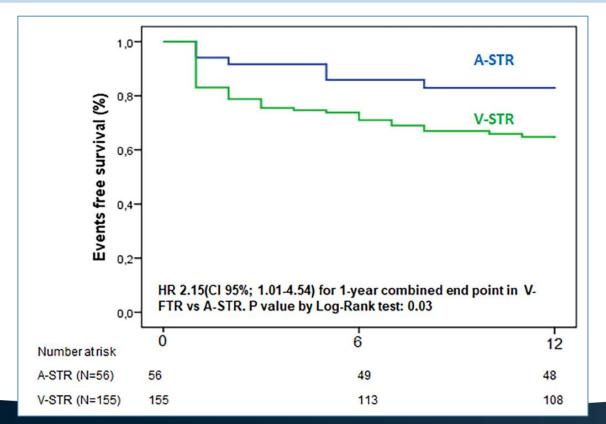
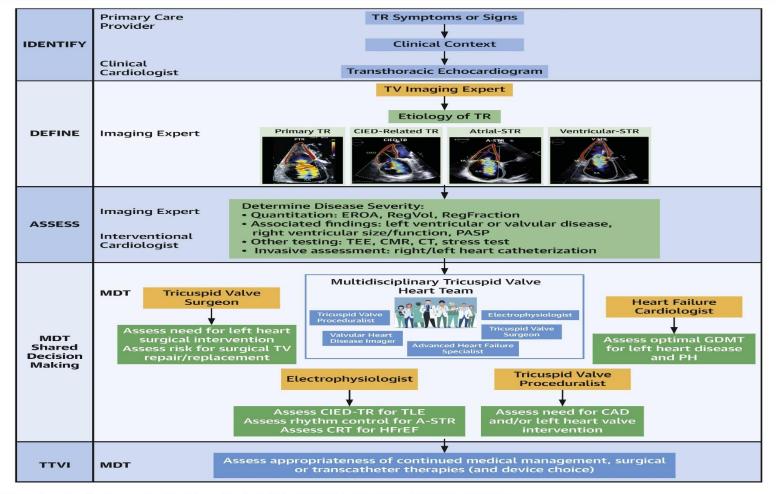


Table S4. Baseline echo data

Echocardiographic parameter	TEER Group	Control Group
Ejection Fraction %	59.3±9.3	58.7±10.5
Ejection Fraction<50% n, (%)	23 (14)	21 (14)
Functional etiology n, (%)	165 (94.8%)	158 (92.9%)
Coaptation gap mm	5.5±1.8	5.2±1.7
TAPSE ≤1.7cm n, (%)	83 (48.0%)	68 (41.2%)
Right atrial volume mL	143.2±85.4	153.2±83.2
Tricuspid annulus diameter cm	4.3±0.7	4.5±0.8
Pulmonary systolic pressure mmHg	39.7±9.2	40.1±10.1



Atrial secondary tricuspid regurgitation is associated to more favorable outcome than the ventricular phenotype

CENTRAL ILLUSTRATION: Clinical Approach to TR

Hahn RT, et al. J Am Coll Cardiol HF. 2023;11(8):1084-1102.

In summary

- TR adversely affects prognosis
- Natural history is affected by severity, etiology and mechanism
- Atrial functional TR is associated with lower mortality
- Proper medical heart failure therapy may decrease mortality
- Future trials should assess the effectiveness of personalized medical regimens tailored by echocardiographic and right heart catheterization data.

