

Minimally Invasive Hemodynamic Monitoring

Fernando Chernomordik, MD

Cardiac Intensive Care Unit
The Olga & Lev Leviev Heart Center
Cardiology Division
Sheba Medical Center, Israel

Indications for Hemodynamic Monitoring

Preemptive

Patients "at risk" of deterioration

Adapt monitoring strategy

"Monitoring on its own is not a treatment and there is no evidence that any form of monitoring improves outcomes"

- Prof. JL Vincent

Vascular complications
Infections
Misinterpretation of data
Knotting of PAC
PA rupture
Less invasive methods
available

"Gold standard"
Diagnosis
Rx responsiveness
RV function
Pulm HTN
MCS candidacy, escalation
and weaning

Pulmonary Artery Catheter Use Trends

Pulse Contour Analysis

SHEBA

- Continuous CO monitoring (as opposed to intermittent)
- Very precise assuming stable vascular tone
- Non-calibrated vs. calibrated

Transpulmonary Thermodilution (TPTD)-Based Monitoring Systems

TPTD cardiac output

Continuous CO monitoring (Pulse Contour Analysis)

Volumetric hemodynamics

Stewart-Hamilton Equation

Comparison of PA and TD **Thermodilution Curves**

SHEBA
Tel HaShomer
City of Health

Mean Transit time (MTt) X CO = ITTV

Downslope time (Dt) X CO = PTV

GEDV = Cardiac Preload ritical Care 2017 15

Extravascular Lung Water (EVLW)

Cardiogenic or non-Cardiogenic

Pulmonary Vascular Permeability

Springer

Hemodynamic Monitoring

Index

PVPI = "Cardiogenic vs. Non-Cardiogenic"

Pulmonary Edema

Pulmonary Permeability Diagnoses Etiology of Pulmonary Edema

City of Health

RESEARCH Open Access

Validation of transpulmonary thermodilution variables in hemodynamically stable patients with heart diseases

Matthias Peter Hilty^{1*}, Daniel Peter Franzen^{1,2}, Christophe Wyss³, Patric Biaggi³ and Marco Maggiorini¹

Correlation in CO Measurements in Pulmonary Artery Thermodilution and

TPTD

City of Health

Extra-Vascular Lung Water and PAWP

Tel HaShomer City of Health

TPTD Correlates Well with Pulmonary Tel HaShomer City of Health Artery Thermodilution In HF

Α

9 7

Table 2. Results of Bland-Altman analysis and mean cardiac index (CI)

	CI (Mean ± sp, L/min/m ²)	Mean CO (L/min)	Bias CO _{tp} –CO _{pa} (L/min)	2 SD (L/min)	Error (%)
All measurements (n = 325)	2.3 ± 0.6	4.4	0.45	1.20	27.3
Initial measurement (n = 29)	2.3 ± 0.7	4.3	0.38	1.16	26.9
Minimal CO_{pa} (n = 29)	2.0 ± 0.7	3.8	0.39	1.13	29.8
Maximal CO_{pa} (n = 29)	2.9 ± 0.7	5.5	0.58	1.51	27.4

CO, cardiac output; COpa, CO measured by pulmonary artery thermodilution; COpp, CO measured by transpulmonary thermodilution.

- Depends on correct injection technique
- Demographic data very important
- Overestimates volumes in AS, MR and TR, shunts, PE
- Not reliable with IABP, aortic aneurysm, cardiac tamponade, ECMO
- Underestimates volumes in S/P lung resection, atelectasis, pleural effusions

Complications

Complications related to less-invasive haemodynamic monitoring[‡]

F. J. Belda ^{1*}, G. Aguilar ¹, J. L. Teboul ², D. Pestaña ³, F. J. Redondo ⁴, M. Malbrain ⁵, J. C. Luis ⁶, F. Ramasco ⁷, A. Umgelter ⁸, J. Wendon ⁹, M. Kirov ¹⁰ and E. Fernández-Mondéjar ¹¹, for the PICS Investigators Group [†]

- N=514 w/ PiCCO monitoring
- 475 femoral, 26 radial, 9 axillary, 4 brachial arteries
- First attempt success rate 86%
- Minor bleeding and removal of catheter ~ 3.5%
- "Small hematomas" 4.5%
- Catheter-related infection 0.78%
- Ischemia 0.4% and femoral artery thrombosis 0.2%

More suitable for TPTD	Less suitable for TPTD		
Mixed, non-responsive severe forms of shock	Shock non-responsive to initial therapies		
Severe ARDS and hemodynamically unstable	Severe RV dysfunction		
No contraindications (severe PAD, etc.)	Severe pulmonary hypertension and need to tailor PHTN therapies		
	Advanced HF therapies candidates		
	Patients already on MCS		

My Personal Take on Minimally Invasive Hemodynamic Monitoring

- What are the questions I want to answer?
- How will the information added by the system change management?
- Did I review pitfalls/contraindications?

- Avoid trusting a single parameter and rather use other methods to confirm/rule out suspected diagnosis
- Discontinue invasive monitoring and remove catheters "one day before planned"

2.2.2 -Full Non-invasive assessment of CO

Dr. Katia Orvin, MD

Department of Cardiology, Rabin Medical Center, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

Prof. Doron Zahger, MD, FESC

Department of Cardiology, Soroka Medical Center, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel

Quick access to most relevant practical information on haemodynamic and general monitoring in acute cardiovascular care

