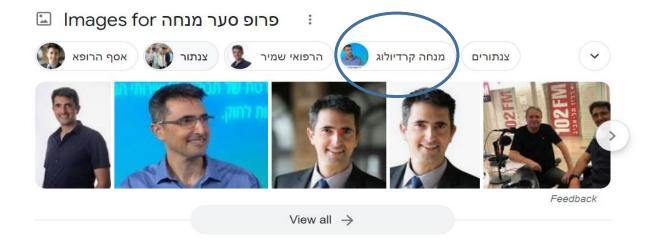
The case against CTO-PCI

Paul Fefer, MD, FESC

Director, Structural heart interventions


Sheba Medical Center

Disclosures

- I may (or may not) believe everything I say today
- Everything I say will be the truth

Know your enemy

- Prof Saar Mincha
- Professor of Cardiology
- Professional charmer
- Terribly good looking
- Cross country runner
- All round "celeb"

What Prof. Mincha will tell you 3 things:

- CTO is associated with adverse outcomes
- CTO-PCI:
 - Reduces angina severity
 - Increases QOL
 - Relieves ischemia
 - Improves LV function
 - Improves survival
- Is underutilized

SCAAR Registry

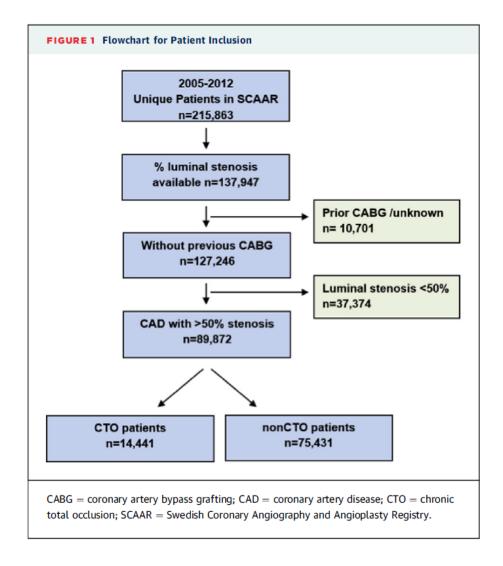


TABLE 1 Baseline Characteristics of Patients With and Those Without Chronic Total Occlusion

	c	то	No	n-CTO	
	(n = 14,441)	Missing	(n = 75,431)	Missing	p Value
Male	77.7	0	70.7	0	< 0.01
Age, yrs	68 (61-76)	289 (0.02%)	68 (60-75)	150 (0.2%)	< 0.01
Age, yrs					< 0.01
0-59	21.7		24.3		
60-79	63.7		62.1		
≥80	14.6		13.6		
Diabetes	23.7	144 (1%)	18.4	603 (0.8%)	< 0.01
Hypertension	60.4	361 (2.5%)	51.4	1,509 (2%)	< 0.01
Hyperlipidemia	60.2	404 (2.8%)	43.3	1,886 (2.5%)	< 0.01
Smoking status		838 (5.8%)		4,149 (5.8%)	< 0.01
Current	18.8		20.5		
Previous	37.6		33.1		
Previous MI	35.5	549 (3.8%)	16.1	1,735 (2.3%)	< 0.01
Previous PCI	17.4	12 (0.08%)	10.6	38 (0.05%)	< 0.01
Indication		0		0	< 0.01
Stable CAD	44.6		17.1		
Unstable CAD*	26.4		49.7		
STEMI	15.1		26.0		
Other	14.0		7.2		
Extent of CAD		3 (0.02%)		53 (0.07%)	< 0.01
1-vessel	17.4		48.6		
2-vessel	35.1		26.0		
3-vessel	38.3		17.2		
Left main†	9.2		8.2		
Puncture site		4 (0.03%)		15 (0.02%)	< 0.01
Femoral	46.7		48.8		
Radial	53.3		51.2		
Any complication	3.9	0	4.2	8 (0.01%)	0.14
Primary decision		4 (0.03%)		8 (0.01%)	< 0.01
Conservative	15.9		12.0		
PCI	62.3		72.3		
CABG surgery	21.9		15.9		
CTO vessel		0		0	
RCA	42.1		NA		
LAD	23.4		NA		
LCx	21.1		NA		
Multiple vessels	13.5		NA		
CTO location		0		0	
Proximal	64.2				

Outcome

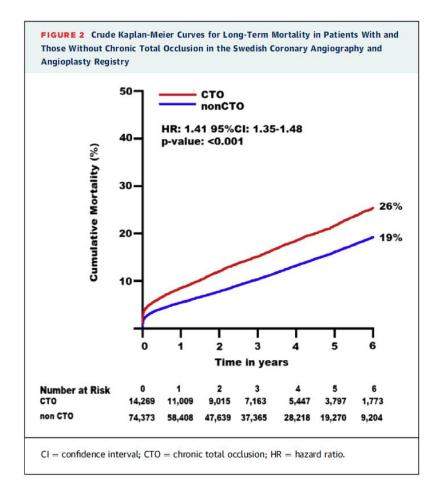
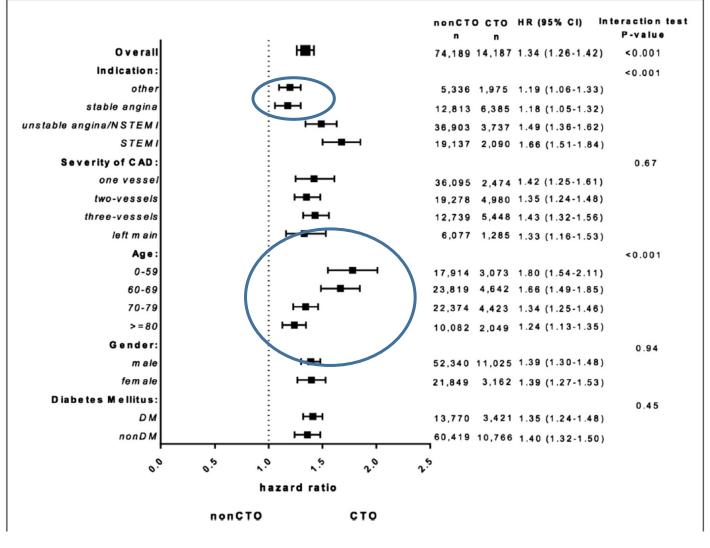
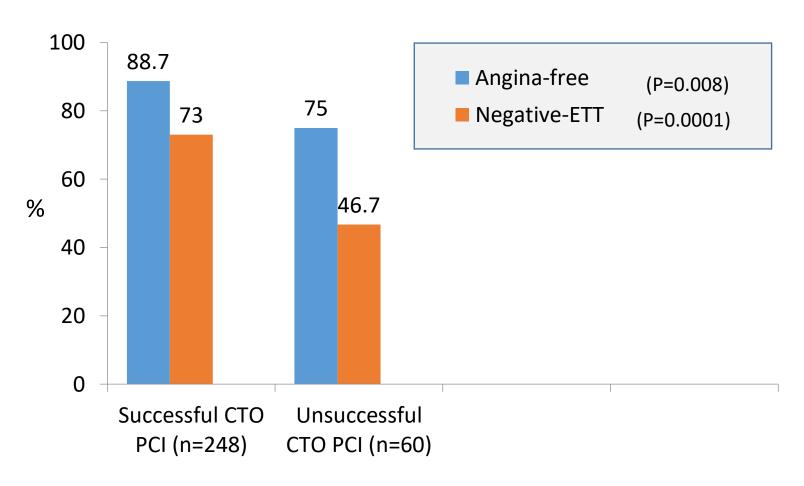



FIGURE 6 Forest Plot Showing Interactions Between Chronic Total Occlusion and Different Patient Characteristics

Current Perspectives on Coronary Chronic Total Occlusions

The Canadian Multicenter Chronic Total Occlusions Registry


Toronto, Ontario, and Calgary, Alberta, Canada; and Tel Aviv, Israel

Paul Fefer, MD,*† Merril L. Knudtson, MD,‡ Asim N. Cheema, MD, PhD,§
P. Diane Galbraith, BN, MSc,‡ Azriel B. Osherov, MD,* Sergey Yalonetsky, MD,*
Sharon Gannot, BS,† Michelle Samuel,* Max Weisbrod,* Daniel Bierstone,* John D. Sparkes, MSc,*
Graham A. Wright, PhD,* Bradley H. Strauss, MD, PhD*

• 1,697 CAD patients in Canadian Multicenter CTO Registry who had at least 1 CTO identified during diagnostic angiography, 4.2008-7.2009

- Prevalence of CTO in CAD patients undergoing CA was 18.4%
- Almost all patients were symptomatic, and the majority had well preserved LV function
- Nonetheless, only 10% had attempted PCI (with 70% success) and 23% underwent CABG.

Multicenter CTO Prospective Observational Registry in Italy: TOAST-GISE

Olivari Z, Rubartelli P, et al; TOAST-GISE Investigators JACC 2003;41:1672

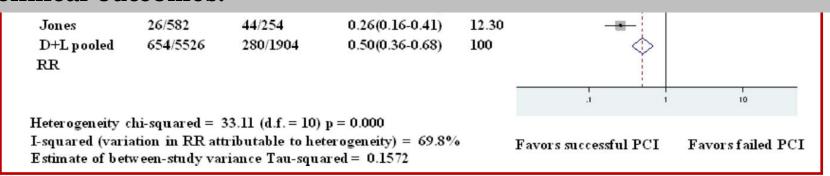
Results of Early Health Status Benefits of Successful CTO Recanalization

- The FACTOR trial assessed 125 patients, 64 (55%) had procedural success.
- Successful CTO was independently associated with:
 - Angina relief
 - Improved physical function
 - Enhanced QOL
 - Clinical benefit was evident only among symptomatic pts

CTO Meta-Analysis (I)

Author (Enrolment period)	Patients N	Cumulative Follow-up	Stent used (%)	Survival rates in successful vs. failed	Adjusted HR Survival in successful vs. failed
Suero et al. ⁶ (1980-1999)	2005	10-yr	BMS (7.0)	73.5% vs. 65%, P = .001	
Olivari et al. ⁷ * 1999-2000	369	1-yr	BMS (89.7)	99.7% vs. 96.4%, P = .04	-
Hoye et al. ⁸ 1992-2002	871	5-yr	BMS (81.0)	93.5% vs. 88.0%, P = .02	-
Aziz et al. ⁹ 2000-2004	543	2-yr	BMS (97.7)	98,0% vs. 94,2%, P = .05	-
Prasad et al. ¹⁰	1262	10-vr	DES (29)	72% vs. 77%. P = .03	

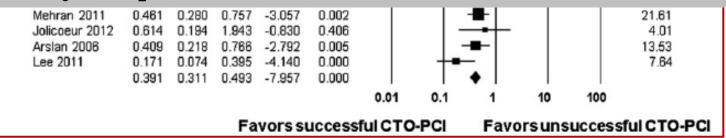
Higher rates of survival were observed at mid-term to long-term follow-up after successful compared with failed PCI of CTOs.


Long-term survival rates and relative risk estimates of successful vs failed CTOs PCI in observational studies, including patients treated with stents. In the graph, black squares represent hazard ratios (except for one study in which odds ratio is represented), and bars indicate 95% CI. *Unadjusted hazard ratio. °Cardiac survival. §Odds ratio. HR, hazard ratios.

Tamburino C, et al. Am Heart J. 2013;165:133

CTO Meta-Analysis (II)

Study	PCI successful n/N	PCI failed n/N	RR(95%CI)	%Weight	RR (Random effects model)
Aziz	9/377	12/166	0.33(0.14-0.77)	7.63	
Borgia	19/237	9 /65	0.58(0.28-1.22)	8.68	
de Labriolle	7/127	2 /40	1.10(0.24-5.01)	3.41	
Lee	8/251	4 /82	0.65(0.20-2.11)	5.07	
Mehran	74/1226	49/565	0.70(0.49-0.98)	13.88	-
					i


Successful PCI recanalization of a CTO (vs. failed PCI) appears to be associated with improved long-term survival and overall clinical outcomes.

CTO Meta-Analysis (III)

Study name		Statistic	s for ea	ach stud	У	Odds ratio and 95% CI	
	Odds ratio	Lower limit			p-Value		Relative weight
Aziz 2007 de Labriolle 2008	0.248 1.108	0.095 0.221	0.648 5.563	-2.846 0.125	0.004 0.901		5.78 2.05

Successful CTO-PCI using a predominantly stent-based strategy is associated with a significant reduction in short- and long-term mortality compared to unsuccessful CTO-PCI

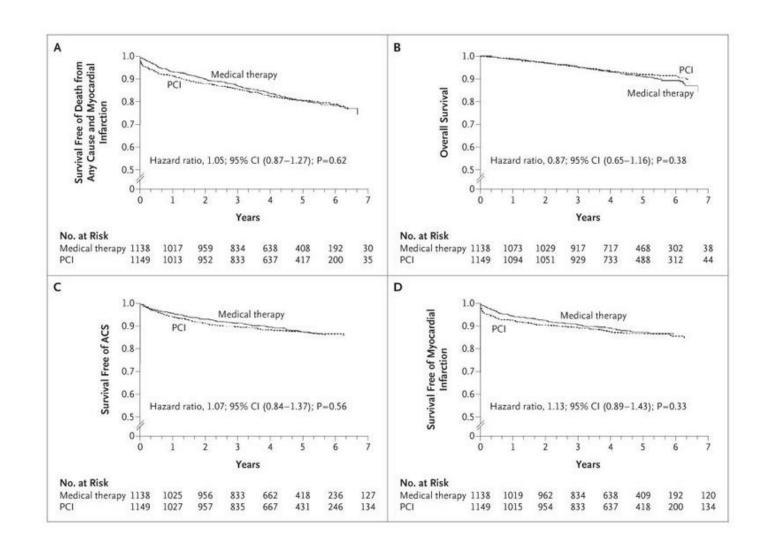
Claim #1:

• CTO is a form of stable coronary disease

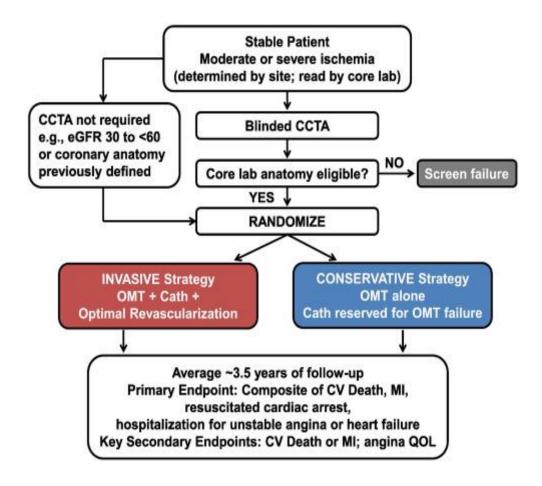
COURAGE Trial

Patients Enrolled: 2,287

Mean Follow-Up: Median, 4.6 years (range


2.5-7.0 years); and 15 years Mean Patient Age: 62 years

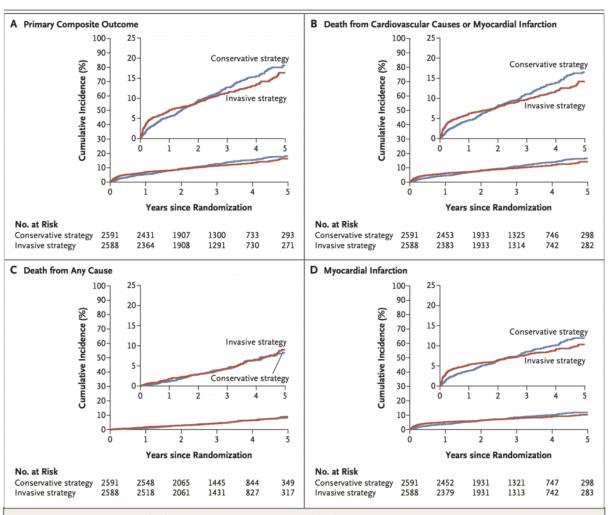
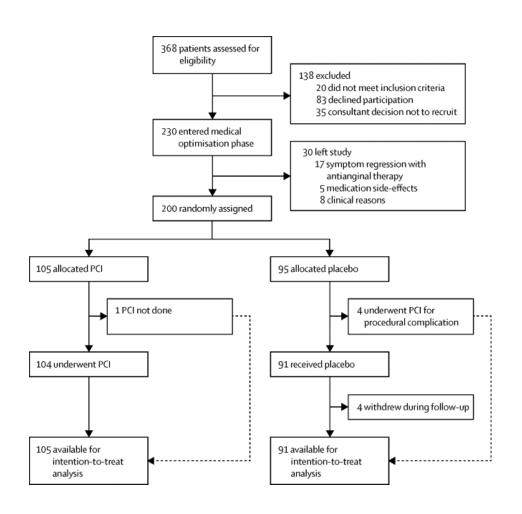
Female: 15%

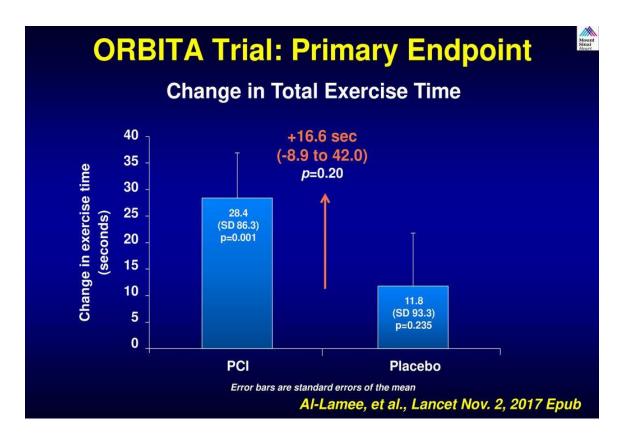

INCLUSION:

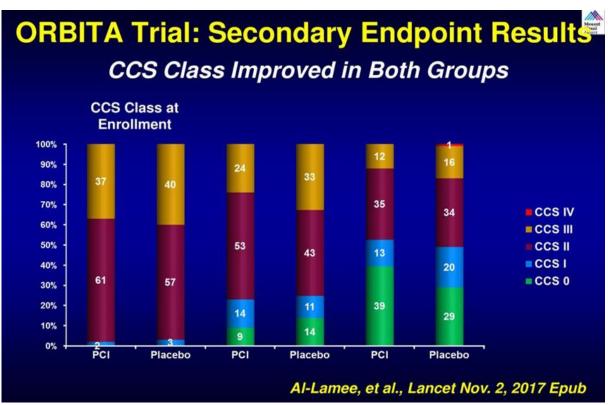
in ≥1 stenosis ≥70% in proximal artery with objective evidence of myocardial ischemia or 2) ≥1 coronary stenosis of ≥80% and classic angina without provocative testing

1ry endpoint: death/MI

ISCHEMIA TRIAL

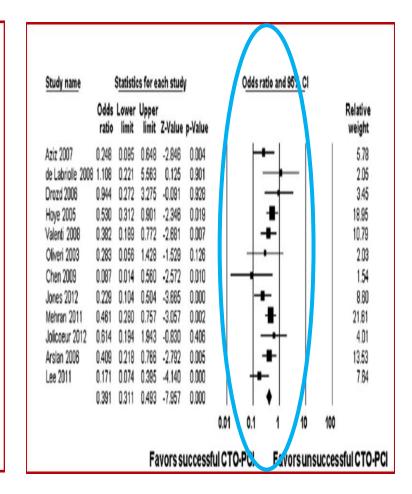




Figure 2. Time-to-Event Curves for the Primary Composite Outcome and Other Outcomes.


Panel A shows the cumulative incidence of the primary composite outcome of death from cardiovascular causes, myocardial infarction, or hospitalization for unstable angina, heart failure, or resuscitated cardiac arrest in the conservative-strategy group and the invasive-strategy group. Panel B shows the cumulative incidence of death from cardiovascular causes or myocardial infarction. Panel C shows the cumulative incidence of death from any cause, and Panel D shows the cumulative incidence of myocardial infarction. In each panel, the inset shows the same data on an enlarged y axis.

ORBITA Trial

ORBITA Trial: Secondary Endpoint Results Blinded Evaluation of Ischemia Reduction **Peak Stress Wall Motion Index** PCI Placebo (n=80)Score (n=57)Pre-randomization 0.18 0.18 0.06 Follow-up 0.19 -0.08 0.02 **△** (Pre-randomization to (0.17)(0.16)follow-up) p=<0.0001 p = 0.43-0.09 (-0.15 to -0.04) Difference in Δ between arms p=0.001Al-Lamee, et al., Lancet Nov. 2, 2017 Epub



But.....CTOs are different

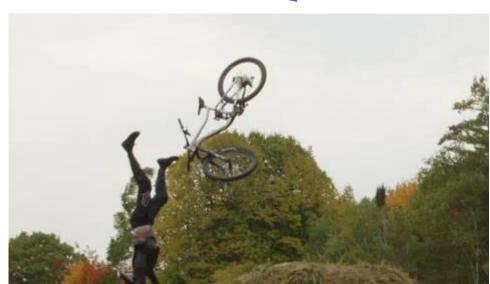
Author (Enrolment period)	Patients N	Cumulative Follow-up	Stent used (%)	Survival rates in successful vs. fail	ed Adjusted HR Surv. al in succe	ssful vs. failed
Suero et al. ⁶ (1980-1999)	2005	10-yr	BMS (7.0)	73.5% vs. 65%, P = .001	+	
Olivari et al. ⁷ * 1999-2000	369	1-ут	BMS (89.7)	99,7% vs. 96,4%, P = .04		
Hoye et al. ⁸ 1992-2002	871	5-уг	BMS (81.0)	93.5% vs. 88.0%, P = .02	+	
Aziz et al. ⁹ 2000-2004	543	2-yr	BMS (97.7)	98.0% vs. 94.2%, P = .05	•—	
Prasad et al. ¹⁰ 1979-2005	1262	10-yr	DES (29) BMS (NR)	72% vs. 77%, P = .03	-	
De Labriolle et al. ¹¹ * 2003-2005	172	2-уг	BMS (9.7) DES (84.0)	95.1% vs 94.7%, P = .3	-	
Valenti et al. ¹² *.°. § 2003-2006	486	4-ут	DES (100)	91.6% vs. 87.4%, P = .03	-	
Lee et al. ²⁰ 2003-2006	333	3-уг	DES (100)	96.7 vs. 94.7%, P = .28	-	_
Mehran et al. ¹⁹⁰ 1998-2007	1791	5-yr	BMS (34.0) DES (66.0)	97.0% vs. 94.2%, P < .01	-	
Jones et al. ¹⁸ 2003-2010	836	5-ут	DES (76.1)	95.5% vs. 82.8%	<u>•</u>	
					0 1 2	3

Study	PCI successful n/N	PCIfailed n/N	RR(95%CI)	%Weight	RR (Random effect model)
Aziz	9/377	12/166	0.33(0.14-0.77)	7.63	_ <u>x</u>
Borgia	19/237	9/65	0.58(0.28-1.22)	8.68	
de Labriolle	7/127	2 /40	1.10(0.24-5.01)	3.41	
Lee	8/251	4/82	0.65(0.20-2.11)	5.07	
Mehran	74/1226	49/565	0.70(0.49-0.98)	13.88	=
Noguchi	7/134	15/92	0.32(0.14-0.76)	7.51	
Prasad	220/914	101/348	0.83(0.68-1.01)	15.60	*
Chen	2/132	3/20	0.10(0.02-0.57)	2.80 —	 •
Valenti	17/344	17/142	0.41(0.22-0.78)	9.88	- zi-
Yi	135/1202	24/130	0.61(0.41-0.90)	13.23	1 /8
Jones	26/582	44/254	0.26(0.16-0.41)	12.30	-
D+L pooled	654/5526	280/1904	0.50(0.36-0.68)	100	\Diamond
RR					1 1 10
Teterogeneity o	hi-squared = 3	33.11 (d.f. = 10)	p = 0.000		

hazard ratio. °Cardiac survival. §Odds ratio. HR, hazard ratios.

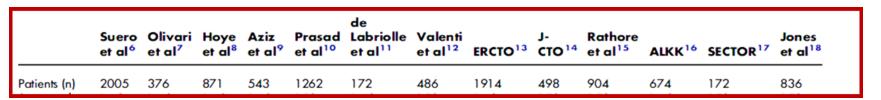
Pancholy SB, et al. Am J Cardiol 2013;111:521

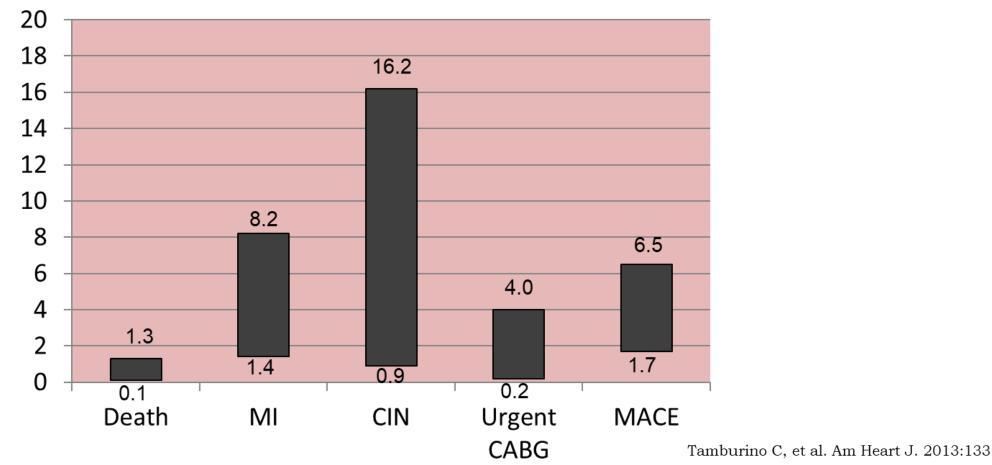
But....as compared to what?


Compared to unsuccessful CTO-PCI

AND

- Comparing successful CTO-PCI to unsuccessful CTO-PCI is
 - Scientifically unsound
 - Simply ABSURD


Bit like comparing....



For a start....Complications

Comparison of Procedural Complications and In-Hospital Clinical Outcomes Between Patients with Successful and Failed Percutaneous Intervention of Coronary Chronic Total Occlusions: A Meta-Analysis of Observational Studies

Muhammad F. Khan,^{1,2*} MD, FACP, Emmanouil S. Brilakis,^{3,4} MD, PhD, FACC, FSCAI, Christopher S. Wendel,¹ Ms, and Hoang Thai,^{5,6} MD, FACC, FSCAI

a Study	a _{Study}	MI(S n/N	а	a Study	CABG (S) n/N	CABG (F) n/N	RR (95% CI)	% Weight	RR (Random effects model)
Angioi	Angioi	3/93	Study						_
Aziz	Aziz	24/3		Angioi	1/93	2/108	1.72(0.16-18.69)	3.38	- *
rozd				de Labriolle	0/127	3/45	19.48(1.03-369.91)	2.25	
loye	Borgia	3/23	Aziz	Drozd	1/298	0/161	0.61(0.02-15.02)	1.92	
vanhoe	Drozd	1/25	de Labrio	Hoye	5/567	10/304	3.73(1.29-10.82)	14.76	
Dlivari	Hoye	1/56		Ivanhoe	10/332	33/148	7.40(3.75-14.62)	29.20	Time.
rasad Chen			Drozd						
uero	Ivanhoe	8/33	Hoye	Lee	0/251	7/89	42.0(2.42-727.96)	2.39	1
i	Prasad	74/5		Olivari	0/289	2/87	16.48(0.79-340.0)	2.13	<u> </u>
ones	Chen	3/13	Ivanhoe	Prasad	12/914	39/348	8.54(4.52-16.11)	31.99	
tewart	Dong	4/21	Prasad	Jones	1/582	2/254	4.58(0.42-50.31)	3.35	-
lan tathore	100000 W	103410000		Stewart	1/47	0/53	0.29(0.01-7.10)	1.94	
athore	Suero	28/1	Chen						
orgia	Yi	15/1	Suero	Sheiban	0/81	2/8	45.56(2.37-876.79)	2.23	
e Labriolle	Jones	7/58	w	Rathore	1/791	1/113	7.0(0.44-111.13)	2.54	
olicoeur	20,700,000	2 (2)(2)(2)	Yi	Yamamoto	0/1192	1/332	10.75(0.44-263.22)	1.91	
ee	Rathore	24/7	Jones	Aziz	0/377	0/166	(Excluded)		
loguchi	Yamamoto	10/1	Rathore	Noguchi	0/134	0/92	(Excluded)		/ \
/alenti	de Labriolle	0/1		Valenti	0/344	0/142	(Excluded)		/
ang heiban	D+L pooled	205/8	Yamamot	Yang	0/87	0/49	(Excluded)		/ !
+L pooled RR	RR	2001	D+L poole						
TE POOIEURI			RR	D+L pooled RR	32/6506	102/2499	6.67(4.26-10.43)	100.00	•
eterogeneity chi-si quared (variation timate of between est of RR=1 : z= 5	Heterogeneity I-squared (van Estimate of b Test of RR=1	riation in etween-st	Heteroger I-squared Estimate Test of RI	I-squared (variat Estimate of bety	hi-squared = 13. tion in RR attribu ween-study varial = 8.32 p = 0.000	table to hetero	geneity) = 8.5%		1 10 Favors successful PCI Favors/failed F
		3 <u>2</u> 2					Urgent CABO	3	

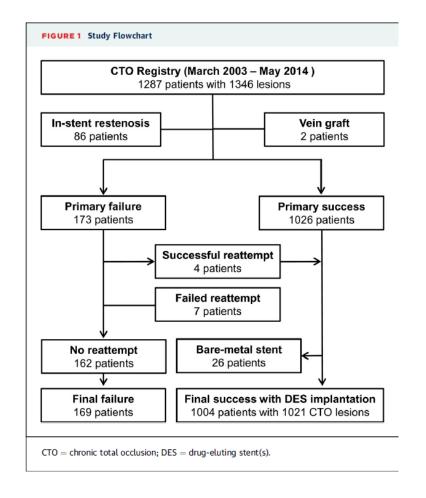
 These complications would never had occurred with OMT

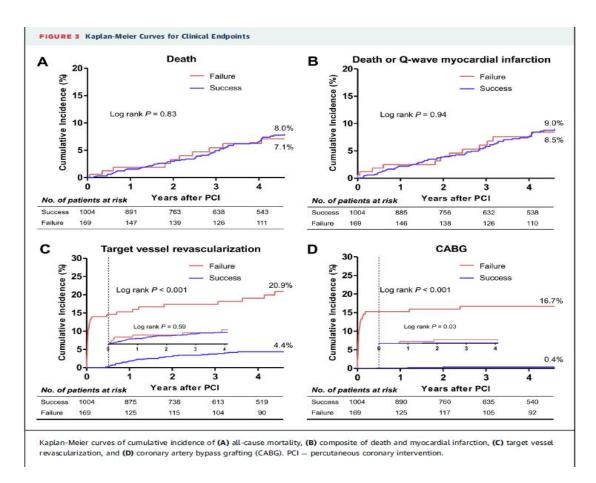
Baseline characteristics worse in unsuccessful PCI

TABLE L Patient Characteristics of the Included Studies

	Study	Year	Follow up (mean ± SD)	Age (S) (mean ± SD)	Age (F) (mean ± SD)	Male (S) %	Male (F)%	DM (S)%	DM (F)%	Prior MI (S)(%)	Prior MI (F)(%)	EF(S) (% ± SD)	EF(F) (% ± SD)	MVD% (S)	MVD% (F)
	Angioi	1995	3.6 ± 1.8	55 ± 10	56 ± 11	52	88	10	11	54	66	59 ± 14	59 ± 14	37	45
	Arslan	2006	2.6 ± 1	61 ± 10	60 ± 11	75	75	25.6	24	40	45	50 ± 14	50 ± 14	67	70
	Aziz	2007	1.7 ± 0.5	59	59	76	81	14	9	58	58	53	53	50	60
	Borgia	2011	4	64 ± 10	65 ± 11	82	82	26	31	58	60	53 ± 9	53 ± 10	73	83
3	de Labriolle	2008	2	61 ± 12	64 ± 10	72	87	19	40.5	21	22	50 ± 12	48 ± 15	45	66
	Drozd	2006	2.5 ± 1.5	57 ± 10	58 ± 10	81	80	11	11	73	66	NA	NA	46	53
2	Jolicoe ur	2011	5.6	58(51-67)	61(55-70)	70	79	33	26	21	29	56(46-61)	55(45-60)	60	69
Ş	Finci	1990	2	55 ± 11	55 ± 12	93	88	NA	NA	NA	NA	NA	NA	24	23
F	Hoye	2005	4.5 ± 2.7	60 ± 11	61 ± 10	74	72	12	9	56	49	NA	NA	54	67
	Ivanhoe	1992	4	55 ± 10	56 ± 11	81	82	10	15	56	53	55 ± 10	56 ± 11	30	54
	Lee	2011	3.6	59 ± 10	64 ± 9	77	23	31	30	18	29	56 ± 10	55.0 ± 11	51	55
	Me hran	2011	2.9	61 ± 11	62 ± 10	85	89	23	22	47	56	54 ± 10	53 ± 11	65	75
	Noguchi	2000	4.3 ± 3.1	61 ± 9	61 ± 11	78	80	26	32	36	51	56 ± 12	54 ± 9	47	67
	Olivari	2003	1	58 ± 10	59 ± 11	86	85	17	20	69	69	56 ± 10	56 ± 10	45	60
	Pra sad	2007	10	63 ± 11	64 ± 11	76	75	NA	NA	33	42	NA	NA	70	70
	Sathe	1994	2.8	55	57	66	70	NA	NA	NA	NA	NA	NA	NA	NA
	Chen	2009	3	64 ± 15	68 ± 7	74	80	26	25	46	65	45 ± 11	42 ± 16	85	95
	Suero	2001	7.6 ± 4.6	60 ± 11	61 ± 12	78	80	21	20	56	52	51 ± 14	52 ± 14	73	82
	Valenti	2008	2	67 ± 11	70 ± 11	81	83	24	21	45	54	42 ± 13	41 ± 14	85	87
	Warren	1990	2.6 ± 1	54	55	53	47	NA	NA	60	40	NA	NA	38	61
	Yang	2011	2	66 ± 11	69 ± 10	82	82	36	37	26	33	46 ± 7	47 ± 5	100	100
	Yi X	2009	6.3 ± 2.5	58 ± 10	58 ± 11	82	84	18	20	54	57	NA	NA	42	48
	Jones	2012	3.8	62 ± 12	64 ± 11	76	79	27	29	32	36	56 ± 9	54 ± 1.4	45	49

Follow-up times and ages are in years.


All the comorbidities are expressed in percentage fraction of total numbers.


SD, standard deviation; MI, myocardial infarction; DM, diabetes mellitus; MVD, multi-vessel disease; EF, ejection fraction; S, successful intervention group; F, failed intervention group; NA, not available.

Successful Recanalization of Native Coronary Chronic Total Occlusion Is Not Associated With Improved Long-Term Survival

Pil Hyung Lee, MD, Seung-Whan Lee, MD, PhD, Hee-Soon Park, MD, Se Hun Kang, MD, Byeong Joo Bae, MD, Mineok Chang, MD, Jae-Hyung Roh, MD, Sung-Han Yoon, MD, Jung-Min Ahn, MD, Duk-Woo Park, MD, PhD, Soo-Jin Kang, MD, PhD, Young-Hak Kim, MD, PhD, Cheol Whan Lee, MD, PhD, Seong-Wook Park, MD, PhD, Seung-Jung Park, MD, PhD

Improvement in LV function

International Journal of Cardiology
Volume 187, 6 May 2015, Pages 90-96

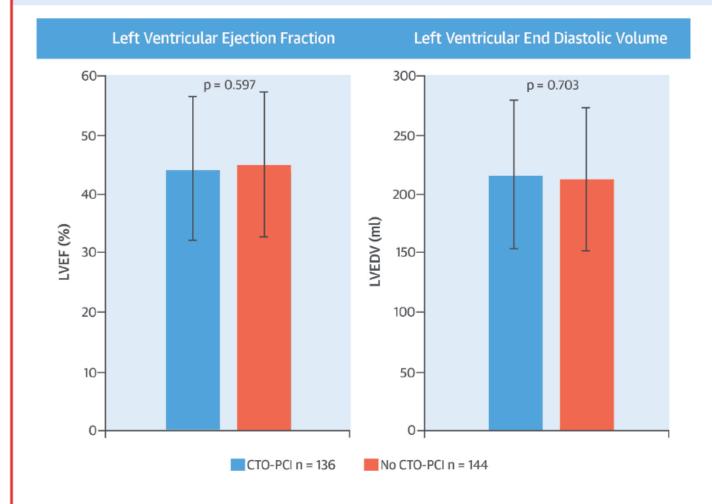
Meta-analysis on the impact of percutaneous coronary intervention of chronic total occlusions on left ventricular function and clinical outcome ★

Loes P. Hoebers ^a, Bimmer E. Claessen ^a, Joelle Elias ^a, George D. Dangas ^b, Roxana Mehran ^b, José P.S. Henriques ^a ス ⊠

- 27 studies, 1990–2013
- 11,085 successful CTO-PCI
- 4347 failed CTO PCI
- After successful CTO PCI, LVEF increased with 4.44% (95% CI: 3.52–5.35, p < 0.01) compared to baseline.

Improvement in LV function

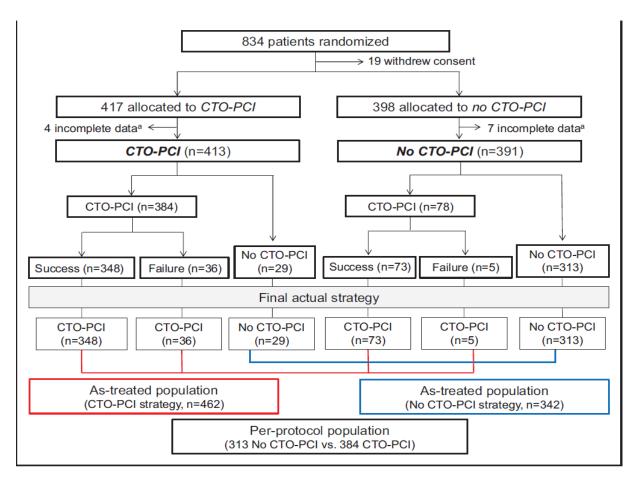
Percutaneous Intervention for Concurrent Chronic Total Occlusions in Patients With STEMI


The EXPLORE Trial

José P.S. Henriques, MD, PhD, ^a Loes P. Hoebers, MD, ^a Truls Råmunddal, MD, PhD, ^b Peep Laanmets, MD, ^c Erlend Eriksen, MD, ^d Matthijs Bax, MD, ^e Dan Ioanes, MD, ^b Maarten J. Suttorp, MD, PhD, ^f Bradley H. Strauss, MD, PhD, ^g Emanuele Barbato, MD, PhD, ^h Robin Nijveldt, MD, PhD, ⁱ Albert C. van Rossum, MD, PhD, ⁱ Koen M. Marques, MD, PhD, ⁱ Joëlle Elias, MD, ^a Ivo M. van Dongen, MD, ^a Bimmer E.P.M. Claessen, MD, PhD, ^a Jan G. Tijssen, PhD, ^a René J. van der Schaaf, MD, PhD, ^j for the EXPLORE Trial Investigators

- 304 pts with STEMI and concurrent CTO randomized to CTO-PCI (< 1 week) and OMT
- Multicentre 2007-2015
- 1ry outcomes were LVEF and LVEDV

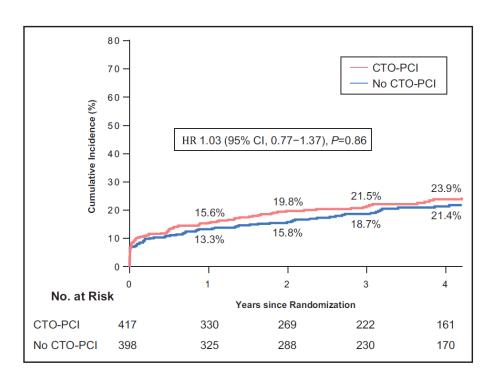
CENTRAL ILLUSTRATION Left Ventricular Function at 4-Month Follow-Up in STEMI Patients Undergoing CTO PCI Versus no CTO PCI


Henriques, J.P.S. et al. J Am Coll Cardiol. 2016;68(15):1622-32.

Left ventricular ejection fraction (LVEF) (left) and left ventricular end-diastolic volume (LVEDV) (right) at 4-month follow-up. All analyses were performed on an intention-to-treat basis: core-laboratory-reported success rates of chronic total occlusion percutaneous coronary intervention were 73%; and operator-reported success rates were 77%. Whiskers indicate standard deviation. CTO = chronic total occlusion; PCI = percutaneous coronary intervention; STEMI = ST-segment elevation myocardial infarction.

Do we have any RCTs?

Randomized Trial Evaluating Percutaneous Coronary Intervention for the Treatment of Chronic Total Occlusion


The DECISION-CTO Trial

Null outcomes

Table 2. Primary and Secondary Clinical End Points in the Intention-to-Treat Analysis

	CTO-PCI (n=417)	No CTO-PCI (n=398)	Crude HR (95% CI)	P Value
Primary end point: death, MI, stroke, or any revascularization	93 (22.3)	89 (22.4)*	1.03 (0.77–1.37)	0.86
Secondary end points				
Death	15 (3.6)	21 (5.3)	0.70 (0.36–1.37)	0.30
Cardiac cause	8 (1.9)	14 (3.5)	0.56 (0.24–1.34)	0.19
Noncardiac cause	7 (1.7)	7 (1.8)	0.99 (0.35–2.82)	0.99
Myocardial infarction	47 (11.3)	34 (8.5)	1.39 (0.90–2.15)	0.14
Periprocedural MI	41 (9.8)	30 (7.5)	1.37 (0.816–2.18)	0.19
Spontaneous MI	7 (1.7)	7 (1.8)	0.88 (0.30–2.57)	0.82
Stroke	6 (1.4)	10 (2.5)	0.61 (0.23–1.65)	0.33
Any revascularization	46 (11.0)	42 (10.6)	1.14 (0.75–1.73)	0.55
CTO vessel	33 (7.9)	30 (7.5)	1.13 (0.69–1.84)	0.63
Non-CTO vessel	29 (7.0)	23 (5.8)	1.34 (0.77–2.31)	0.30
Death, MI, or stroke	66 (15.8)	61 (15.3)	1.07 (0.75–1.51)	0.72
Cardiac death, MI, stroke, or any revascularization	86 (20.6)	82 (20.6)	1.02 (0.76–1.39)	0.88
Death, spontaneous MI, stroke, or any revascularization	64 (15.3)	69 (17.3)	0.91 (0.65–1.30)	0.59

• 1ry endpoint: death, MI, stroke, revascularisation

A randomized multicentre trial to compare revascularization with optimal medical therapy for the treatment of chronic total coronary occlusions

Gerald S. Werner^{1*}, Victoria Martin-Yuste², David Hildick-Smith³, Nicolas Boudou⁴, Georgios Sianos⁵, Valery Gelev⁶, Jose Ramon Rumoroso⁷, Andrejs Erglis⁸, Evald Høj Christiansen⁹, Javier Escaned¹⁰, Carlo di Mario¹¹, Thomas Hovasse¹², Luis Teruel¹³, Alexander Bufe¹⁴, Bernward Lauer¹⁵, Kris Bogaerts¹⁶, Javier Goicolea¹⁷, James C. Spratt¹⁸, Anthony H. Gershlick¹⁹, Alfredo R. Galassi²⁰, and Yves Louvard¹²; for the EUROCTO trial investigators[†]



Figure 3 Comparison of Seattle angina questionnaire subscale changes between optimal medical therapy and percutaneous coronary intervention.

- 396 pts randomized 2:1
- 12 month FU
- 1ry endpoint: Change in SAQ at 12 months

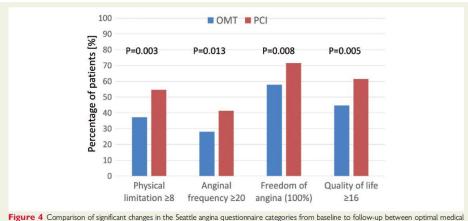
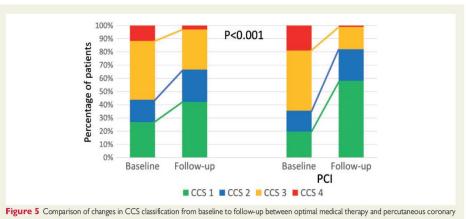



Figure 4 Comparison of significant changes in the Seattle angina questionnaire categories from baseline to follow-up between optimal medical therapy and percutaneous coronary intervention.

intervention. CCS: Canadian Cardiology Society.

But note:

- 86% success rate
- 36% retrograde PCI

Highly proficient operators in centres of excellence

- ALL patients were symptomatic
- 192 pts with 1 vessel CAD (CTO only)
- 204 pts with multivessel CAD 116 underwent pre-randomization PCI of non-CTO vessels
- Safety at 36 months equivalent
- Importantly, hard endpoints not different (angina stability, treatment satisfaction, mortality)

Best available RCT data -meta-analysis

- 6 RCTs
- 1890 pts
- Median FU 12 months
- 63±9.8 yrs, 83% male
- LVEF 53±13%
- SYNTAX Score 21.6±10

Chayakrit Krittanawong, MD^{ab}*

Hafeez Hassan Virk, MD^c

Mohammed Mhanna, MD^d

Zhen Wang, PhD^{ef}

Paul Poommipanit, MD^c

Hani Jneid, MD^{ab}

* Michael E. DeBakey VA Medical Center, Houston,

Texas

* Section of Cardiology, Baylor School of Medicine,

Houston, Texas

* Section of Cardiology, University Hospitals,

Case Western Reserve University, Cleveland,

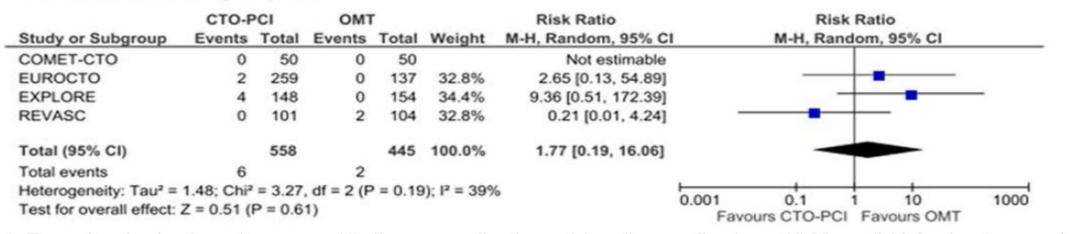
Ohio

- d Department of Internal Medicine, The University of
 Toledo, Toledo, Ohio
 e Robert D. and Patricia E. Kern Center for the
 Science of Health Care Delivery, Mayo Clinic,
 Rochester, Minnesota
 f Division of Health Care Policy and Research,
 Department of Health Sciences Research, Mayo
 Clinic, Rochester, Minnesota
 26 July 2021
 3 August 2021
- Jeroudi OM, Alomar ME, Michael TT, Sabbagh AE, Patel VG, Mogabgab O, Fuh E, Sherbet D, Lo N, Roesle M, Rangan BV,

All-cause mortality 1 year

	CTO-F	PCI	OMT	Γ		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	I M-H, Random, 95% CI
COMET-CTO	0	50	0	50		Not estimable	
EUROCTO	2	259	0	137	16.4%	2.65 [0.13, 54.89]	-
EXPLORE	5	148	2	154	57.1%	2.60 [0.51, 13.20]	
REVASC	1	101	2	104	26.5%	0.51 [0.05, 5.59]	
Total (95% CI)		558		445	100.0%	1.70 [0.50, 5.80]	-
Total events	8		4				
Heterogeneity: Tau ² =	0.00; Chi ²	= 1.31	, df = 2 (F	= 0.52	2); 12 = 0%		0.004
Test for overall effect:	Z = 0.85 (P = 0.4	0)		30 000		0.001

.


Myocardial infarction 1 year

	CTO-F	PCI	OM	Г		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	M-H, Random, 95% CI
COMET-CTO	0	50	0	50		Not estimable	
EUROCTO	5	259	0	137	8.7%	5.84 [0.33, 104.81]	
EXPLORE	8	148	9	154	84.3%	0.92 [0.37, 2.33]	-
REVASC	0	101	1	104	7.1%	0.34 [0.01, 8.33]	•
Total (95% CI)		558		445	100.0%	1.01 [0.43, 2.36]	•
Total events	13		10				
Heterogeneity: Tau2 =	0.00; Chi ²	= 1.97	. df = 2 (F	P = 0.37); I2 = 0%		0001 011 100 1000
Test for overall effect:	Z = 0.03 (P = 0.9	8)				0.001

TLR 1 year

	CTO-F	PCI	OMT	Г		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
DECISION-CTO	7	147	7	398	32.8%	2.71 [0.97, 7.59]	-
EUROCTO	6	259	2	137	16.0%	1.59 [0.32, 7.76]	
EXPLORE	12	148	13	154	51.2%	0.96 [0.45, 2.04]	-
Total (95% CI)		554		689	100.0%	1.46 [0.75, 2.87]	•
Total events	25		22				
Heterogeneity: Tau2 =	0.08; Chi2	= 2.56	, df = 2 (F	P = 0.28	3); I2 = 229	6	0.001
Test for overall effect:	Z = 1.11 (P = 0.2	7)		M		0.001

Cardiac mortality 1 year

Conclusions

- There is no convincing proof that CTO-PCI applied broadly has prognostic benefit regarding
 - angina relief
 - QOL
 - LV function
 - Mortality
- CTO-PCI may have benefit in selected patients
 - Limiting angina after PCI of non-CTO vessels
 - Undertaken in centres of excellence

So Saar....Good luck!

