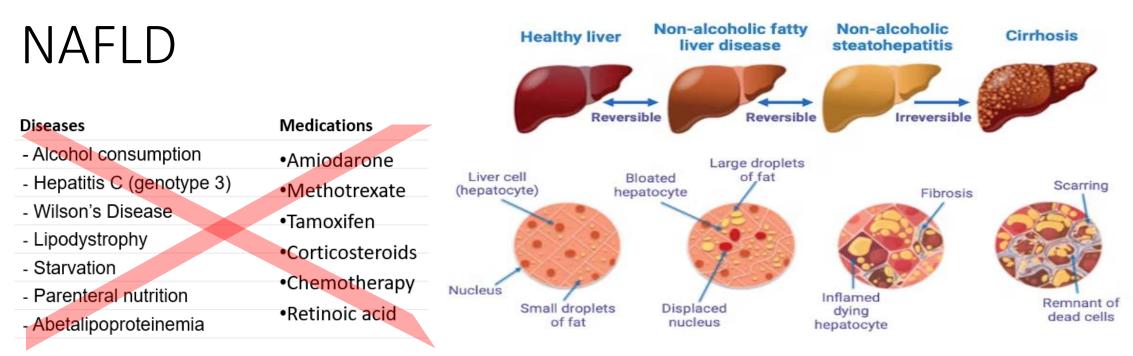
Fatty liver disease as a cardiovascular risk factor

Marius Braun MD

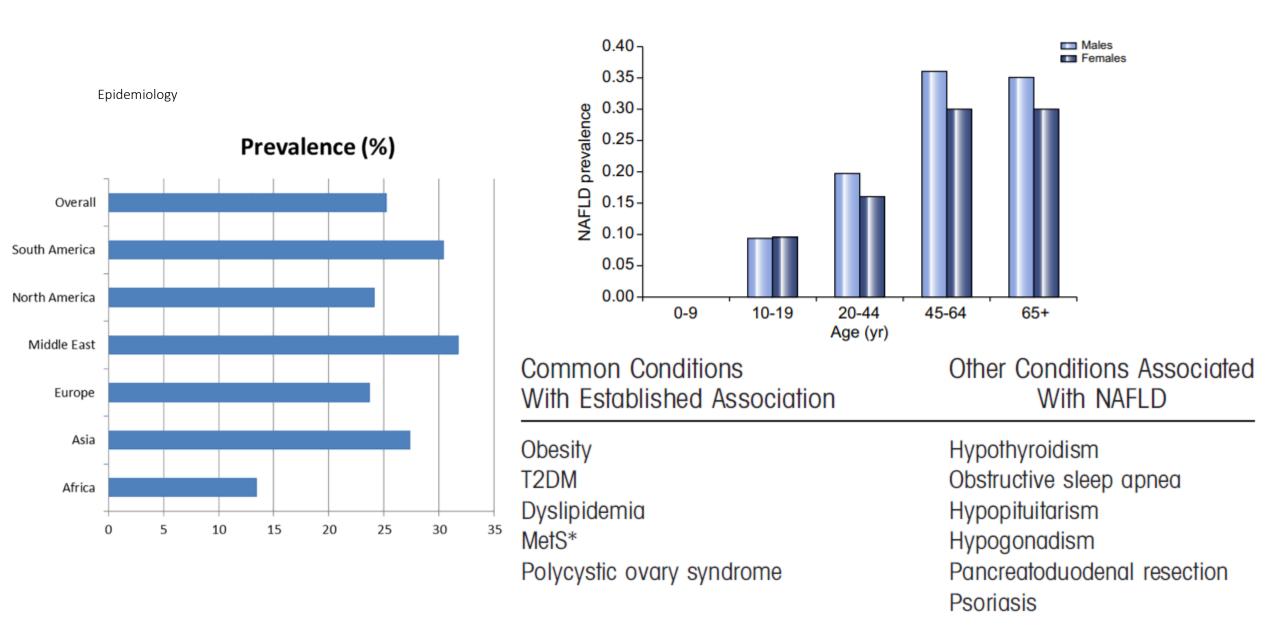
Liver Institute director


Beilinson Hospital

30.12.2022

Case

- 64y male , retired
- NASH cirrhosis
- Obese, DM, HTN, Diuretic controlled ascites
- Plt 50K Alb 3.5 INR 1.4 Creatinine 1.2
- Variceal band ligation-preventive
- Chest pain
- Exertional dyspnea

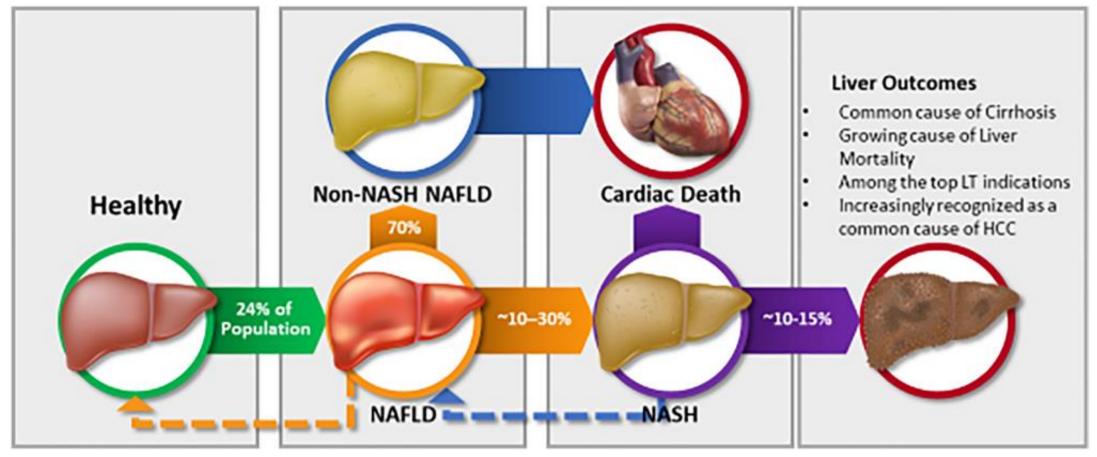


NAFL

- •5% steatosis without :
 - hepatocellular injury
 - hepatocytes ballooning
 - •Fibrosis
- •Usually, good liver prognosis

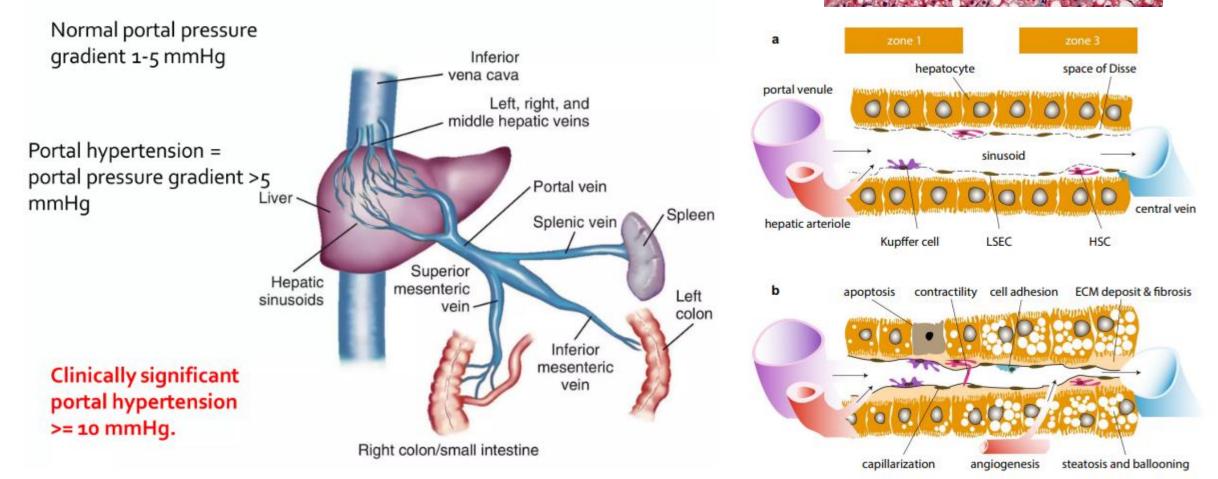
NASH

- •5% steatosis with :
 - Inflammation
 - hepatocellular injury
 - hepatocytes ballooning
 - •<u>+</u> fibrosis



The epidemiology of nonalcoholic steatohepatitis, Volume: 11, Issue: 4, Pages: 92-94, First published: 20 April 2018, DOI: (10.1002/cld.710) Journal of Hepatology 2019 vol. 70 j 531–544

Genetic factors	Drugs
Family history of NAFLD	Alcohol
PNPLA3	Amiodarone
TM6SF2	Mipomersen
HSD17B13	Lomitapide
GCKR	Tamoxifen
MBOAT7	Methotrexate
	Corticosteroids, Valproate, Aspirin (eg, Reye syndrome) NSAID, NRTI, Tetracycline


Natural history

The epidemiology of nonalcoholic steatohepatitis, Volume: 11, Issue: 4, Pages: 92-94, First published: 20 April 2018, DOI: (10.1002/cld.710)

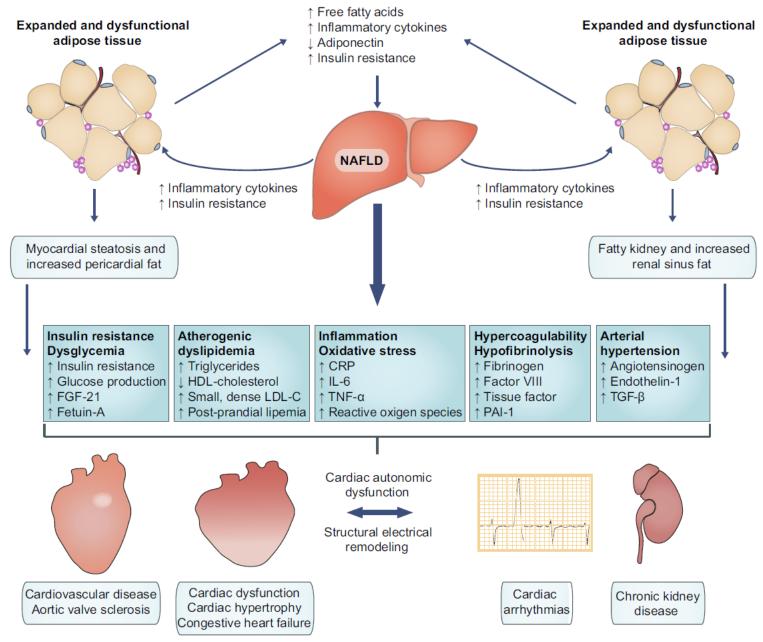
Fibrosis-best prognostic factor

Portal hypertension

Digestive Diseases and Sciences (2018) 63:563–576

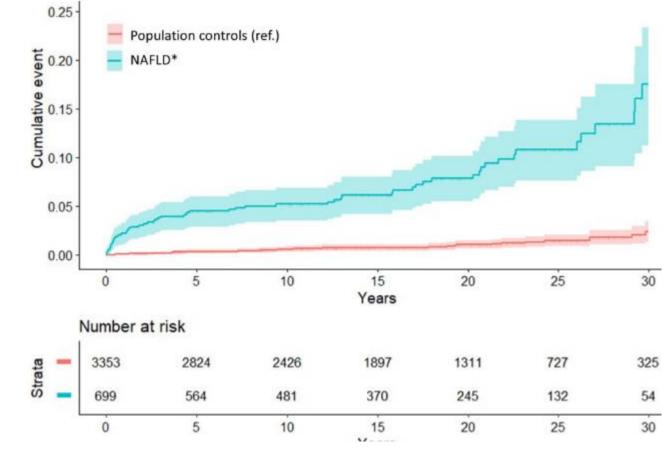
Assessment of NAFLD

- NAFLD fibrosis score
 - -1.675 + 0.037 x Age (years) + 0.094 x BMI (kg/m2) + 1.13 x IFG/diabetes (yes = 1, no = 0) + 0.99 x AST/ALT ratio 0.013 x platelet (x109/l) 0.66 x Albumin (g/dl)
 - A score of less than -1.455 excludes fibrosis, a score of greater than 0.676 predicts fibrosis



Ultrasound	Fibroscan	CT unenhanced	MRI
Fat	Fat	Fat	Fat
Hyperechoic liver	Quantitation- CAP	Hounsfield units	PDFF
Sensitivity	Fibrosis	Structural change	Fibrosis
Liver morphology	Elasticity KPA	Liver spleen size	Elastography
Spleen size	Cheap, available, validated	Sensitive	Highly accurate
Operator	Limitations	Expensive, radiation	Very expensive

The contribution of NAFLD to the increased risk of cardiovascular disease

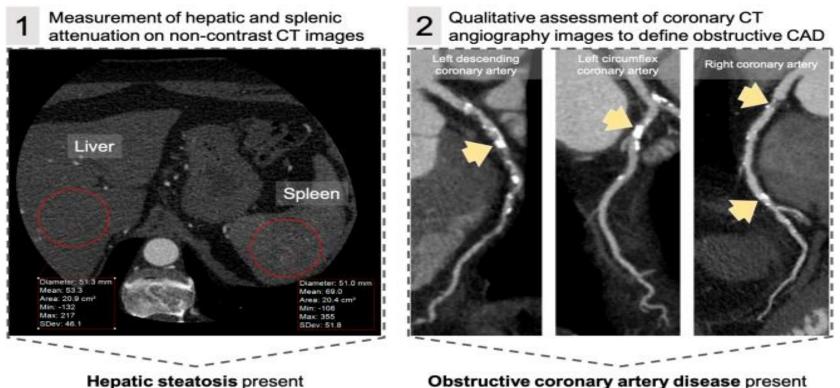

Journal of Hepatology 2015 vol. 62 j S47–S64

Population	Outcome	Incidence Rate Per 1,000 Person-Years*	Number of Studies	95% CI	l ² (%)	Follow-up (Years)
NAFLD	CVD-specific mortality	4.79	6	(3.43-6.7)	91.17	12.96
NAFLD	HCC	0.44	3	(0.29-0.66)	0.00	5.82
NAFLD	Liver-specific mortality	0.77	7	(0.33-1.77)	91.84	13.17
NAFLD	Overall mortality	15.44	7	(11.73-20.34)	97.17	13.17
NASH	Advanced fibrosis	67.95	3	(46.84-98.56)	9.80	4.05
NASH	HCC	5.29	1	(0.75-37.56)	NA	4.50
NASH	Liver-specific mortality	11.77	3	(7.1-19.53)	0.00	8.08
NASH	Overall mortality	25.56	2	(6.29-103.8)	73.85	6.17
		IRR*				
NAFLD	Liver-specific mortality	1.94	5	(1.28-2.92)	26.78	13.38
NAFLD	Overall mortality	1.05	5	(0.7-1.56)	97.99	13.38
NASH	Liver-specific mortality	64.6	3	(35.43-117.8)	0.00	8.08
NASH	Overall mortality	2.56	2	(0.63-10.39)	73.76	6.17
	-	AHR Ratio*				
NAFLD	Liver-specific mortality	2.6	5	(0.91-7.42)	76.66	13.23
NAFLD	Overall mortality	1.04	5	(1.03 - 1.04)	0.08	13.23
		Fibrosis Progression				
NASH	Percent fibrosis progression [†]	40.76	4	(34.69-47.13)	5.70	4.91
NASH	Mean fibrosis annual progression rate [†]	0.09	2	(0.06-0.12)	0.00	4.01

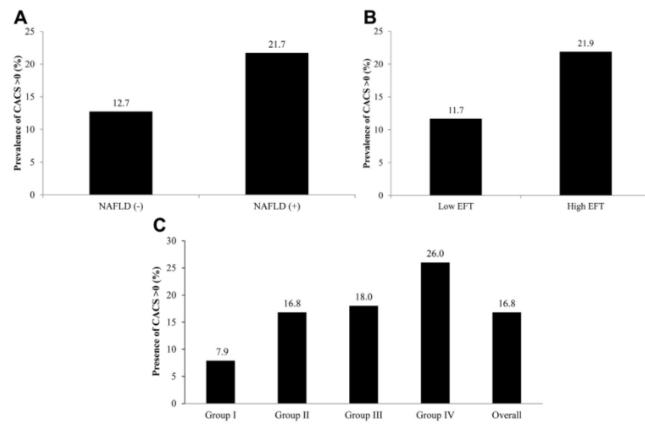
TABLE 3. Incidence and IRR for Progression of NAFLD and NASH

*Study sources in Supporting Table F. [†]Study sources in Supporting Table E. Abbreviation: NA, not applicable.

Cardiovascular disease risk in paediatric and young adult non-alcoholic fatty liver disease

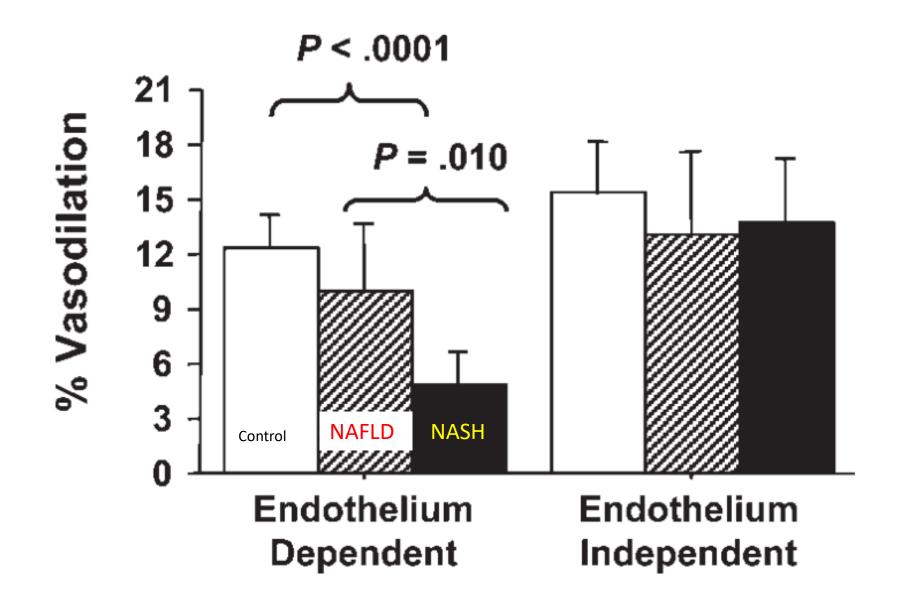


Simon TG, et al. Gut 2022;0:1–8. doi:10.1136/gutjnl-2022-328105


NAFLD and vascular disease

Carotid intima-media thickness (CIMT) Coronary artery calcification (CAC)

- NAFLD is independently associated with increased CIMT and CAC
- NAFLD :impaired flow-mediated vasodilation, increased CIMT, and increased carotid atherosclerotic plaques independent of metabolic syndrome



NAFLD and thicker EAT (>3.18 mm) are at increased risk for coronary calcification (CAC score >0)

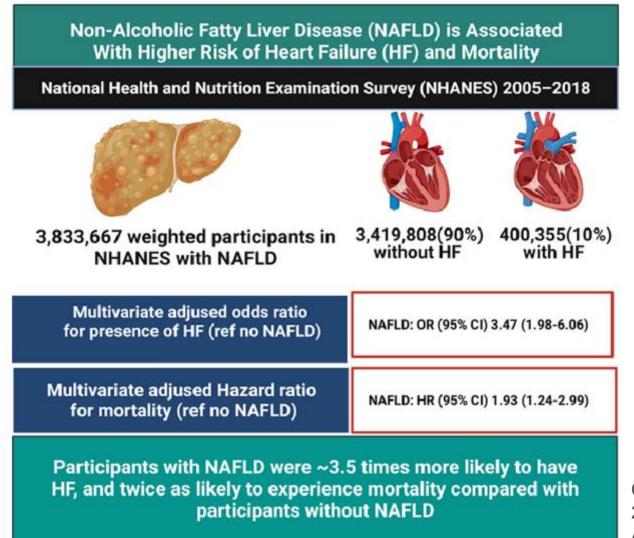
Figure 1 Prevalence of CACS > 0 according to of epicardial fat thickness and nonalcoholic fatty liver disease. (A) Prevalence of CACS > 0 in two groups according to the presence of NAFLD; (B) Prevalence of CACS > 0 in two groups according to the degree of epicardial fat thickness; (C) Prevalence of CACS > 0 in four groups according to the presence of NAFLD and degree of epicardial fat thickness. Group I (low EFT and absence of NAFLD); Group II (low EFT and presence of NAFLD); Group III (high EFT and absence of NAFLD). CACS, coronary artery calcium score.

Journal of Clinical Lipidology, Vol 10, No 3, June 2016

Echo in NAFLD

- lower early diastolic relaxation velocity
- higher LV filling pressure (E/e' ratio)
- worse absolute global longitudinal strain

NAFLD and the heart


NAFLD

- Proinflammatory, oxidative
- valvular calcifications
- diastolic dysfunction
- left ventricular hypertrophy
- autonomic dysfunction

Arrhythmias

- Atrial fibrillation
- Prolonged QT
- Non sustained VT

Non-Alcoholic Fatty Liver Disease, Heart Failure, and Long-Term Mortality: Insights From the National Health and Nutrition Examination Survey

Current Problems in Cardiology, 2022-12-01, Volume 47, Issue 12, Article 101333

The Cardiovascular Link Between Liver Disease and HFpEF

- + Diastolic dysfunction + + Atrial myopathy +
- + Limited exercise capacity + + High/normal cardiac output +

HFpEF

NAFLD

- + Systemic vasoconstriction +
- + Elevated sympathetic tone +
- + Chronotropic insufficiency +
- + Salt and water retention +
 - + Portal hypertension +
- + Splanchnic vasodilation ?
- ? Limited preload reserve ?

Impairment of Preload Reserve Across the Spectrum of Cardiovascular Disease **Central Vascular Congestion** Central Vascular Underfilling 12 **^** Dysfunctional Preload Reserve Normal Preload Reserve **Reduced Preload** Pressure and Volume Distribution in the Vascular System 100 90 80 70 Mean Pressure 60 (mmHg) 50 or Percent of Total 40 Volume (%) 30 20

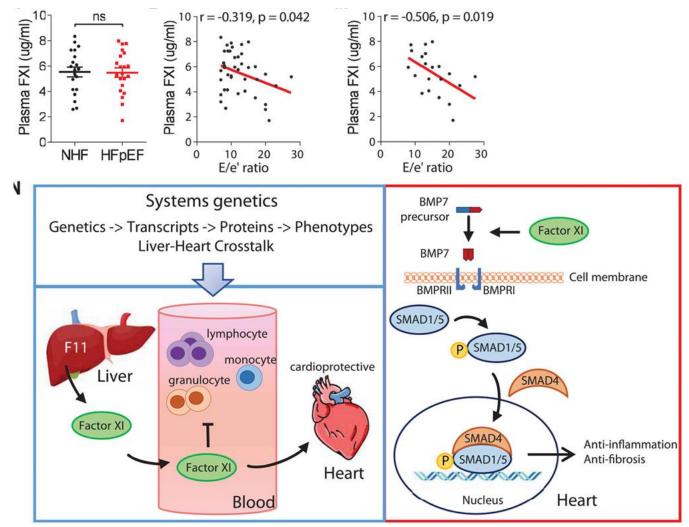
Veins

Circ Heart Fail. 2021;14:e007308

Vena cava

Venules

10 0


Aorta

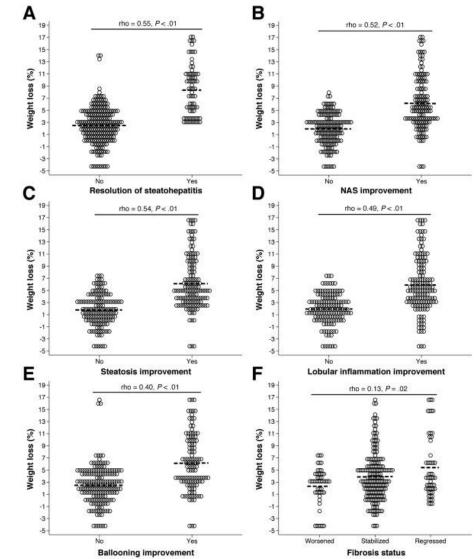
Arteries

Arterioles

Capillaries Mean Pressure Percent Volume

Liver-heart cross-talk mediated by coagulation factor XI protects against heart failure

Science. 2022 September 23; 377(6613): 1399–1406.


Multiethnic Genome-Wide Association Study Finds 7 Subgroups of NAFLD

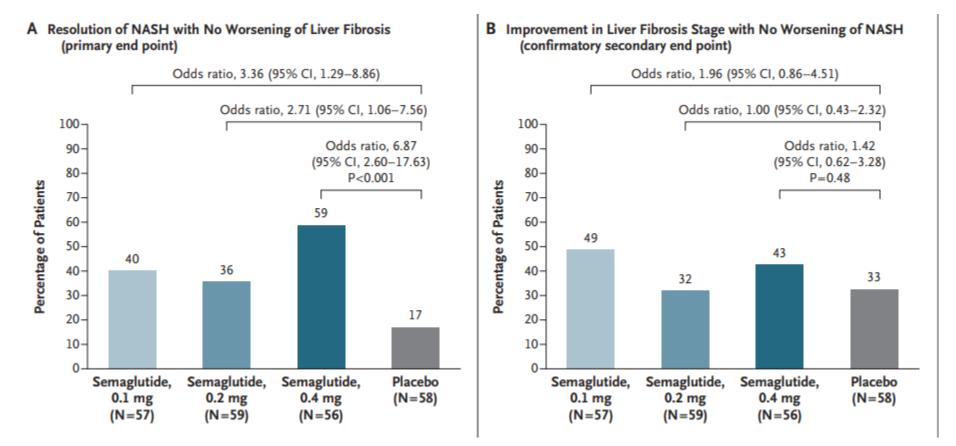
Group	Genes	Steatosis	Cirrhosis	LDL	MI	TG	HDL	DM	BMI
Low lipoprotein out	PTPRD PNPLA3 TM65F2	1	Ť	Ļ	Ļ	Ļ	Ļ	t	Ļ
High lipoprotein in	APDE	1	1	Ļ	\downarrow	↓	1	1	î
Low Lipid Burn	FTO	1		↓			↓	î	î
Insulin	INSR PNPLA2 GRB14 SRE6F1	1		t	Ť	Ť	Ļ	Ť	Ļ
Absorb	MTTP	1		î		Î	1	Î	
Glucose	GCXR TRIB1	1		Ŷ	Î	Ť	Ļ	↓	Ļ
Divert	MBOAT7 MARC1 TOR1B ADH1B GPAM	1	Ť	Î	Ť	ţ	t	Î	
Epidemiology		1	Î	Î	Ť	Î	Ļ	1	1

BMI, body mass index; DM, diabetes mellitus; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MI, myocardial infarction; TG, triglycerides. Du X, et al. Presented at: The Liver Meeting 2022: American Association for the Study of Liver Diseases (AASLD); November 4-8, 2022; Washington, DC/Virtual. Presentation 14.

Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis

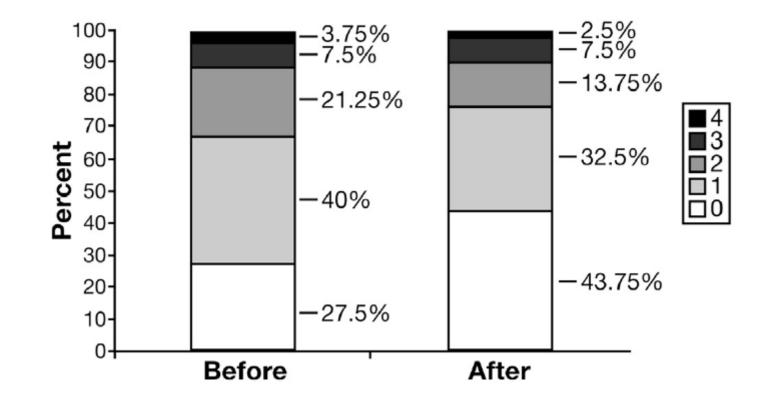
Gastroenterology 2015;149:367–378

Ultra processed food Mediterranean diet

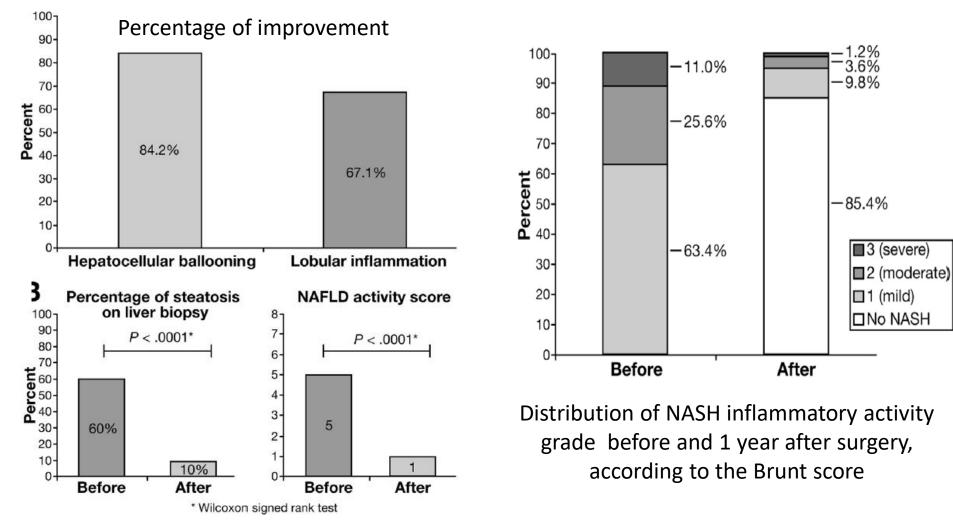

Social Determinants of Health and Association With Outcomes in Patients With MAFLD

	Mortality		Cirrhosis (FIB-4 < 3.25)		Cardiovascular Disease		Obesity-Related Cancer	
Predictor	HR (95% CI)	P Value	HR (95% CI)	P Value	HR (95% CI)	<i>P</i> Value	HR (95% CI)	<i>P</i> Value
Disadvantage								
Quartile 1	Referen	ce	Refere	ence	Refer	ence	Refer	ence
Quartile 2	1.33 (1.19, 1.50)	< .0001	1.08 (0.90, 1.30)	.40	1.16 (1.01, 1.34)	.034	1.25 (1.02, 1.53)	.031
Quartile 3	1.52 (1.36, 1.71)	< .0001	1.19 (0.99, 1.43)	.057	1.26 (1.09, 1.45)	.001	1.15 (0.93, 1.43)	.180
Quartile 4	1.66 (1.47, 1.87)	< .0001	1.27 (1.06, 1.53)	.010	1.20 (1.03, 1.39)	.017	1.27 (1.02, 1.58)	.029
Affluence								
Quartile 1	Referen	ce	Reference		Reference		Reference	
Quartile 2	0.87 (0.78, 0.97)	.011	0.91 (0.77, 1.09)	.310	0.99 (0.86, 1.15)	.930	0.95 (0.77, 1.17)	.630
Quartile 3	0.69 (0.61, 0.77)	< .0001	0.82 (0.69, 0.98)	.026	0.94 (0.81, 1.08)	.380	0.97 (0.79, 1.19)	.750
Quartile 4	0.58 (0.52, 0.66)	< .0001	0.64 (0.53, 0.78)	< .0001	0.87 (0.76, 1.01)	.072	0.76 (0.61, 0.95)	.014

FIB-4, fibrosis 4.


Song MW, et al. Presented at: The Liver Meeting 2022: American Association for the Study of Liver Diseases (AASLD); November 4-8, 2022; Washington, DC/Virtual. Abstract 110.

A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis


N Engl J Med 2021;384:1113-24

Bariatric Surgery Reduces Fibrosis of Nonalcoholic Steatohepatitis in Morbidly Obese Patients

Distribution of fibrosis stage before and 1 year after surgery: Metavir score

Bariatric Surgery Reduces Features of Nonalcoholic Steatohepatitis in Morbidly Obese Patients

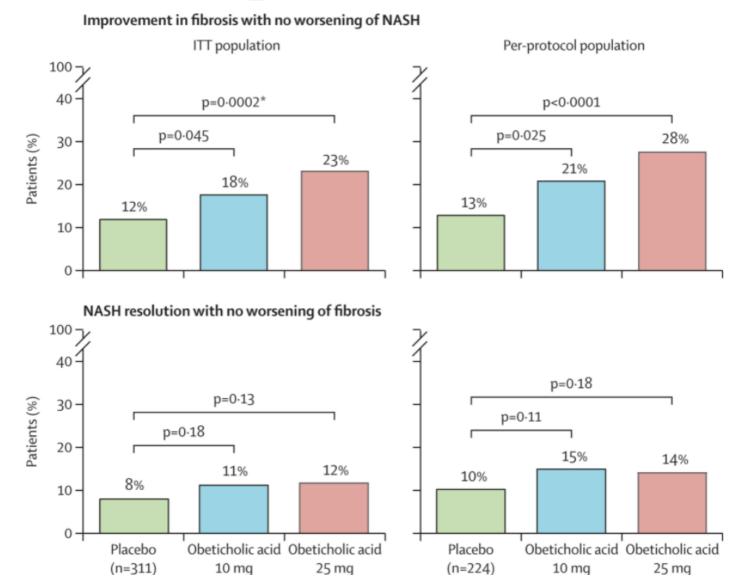
Change of histologic features 1 year after bariatric surgery.

Bariatric Surgery Impact in Patients With NAFLD

Study

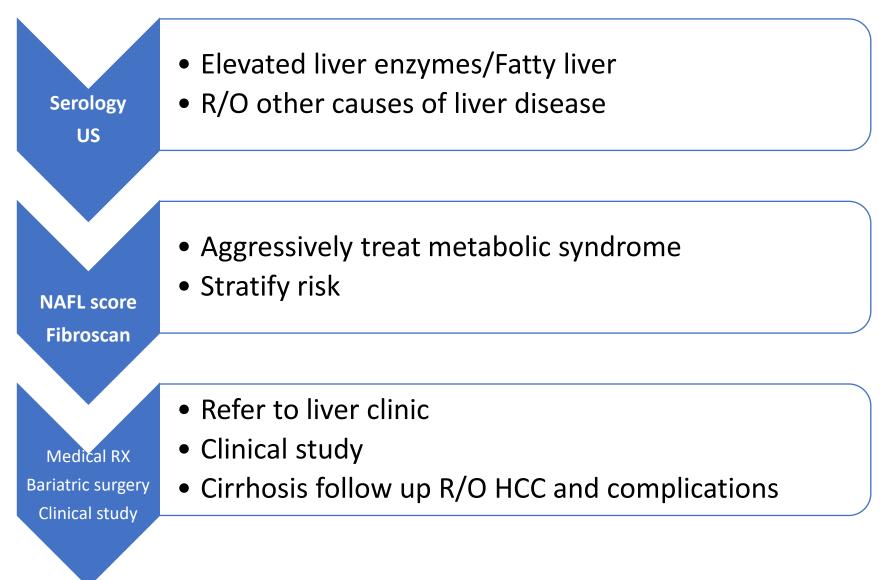
Multicenter retrospective cohort of patients with NAFLD

Patients


 6123 patients with bariatric surgery matched 1:1 to patients without bariatric surgery for demographics by propensity scoring

Outcome	Risk Ratio* (95% CI)	<i>P</i> Value
Coronary artery intervention	0.60 (0.47, 0.78)	.01
Heart failure	0.57 (0.41, 0.78)	.05
Acute myocardial infarction	0.53 (0.28, 0.97)	.03
Cerebrovascular disease	0.70 (0.54, 0.93)	.01
Coronary artery interventions	0.62 (0.40, 0.95)	.02
Mortality	0.60 (0.38, 0.91)	.01

*Patients with bariatric surgery vs non-bariatric surgery.


Krishnan A, et al. Presented at: The Liver Meeting 2022: American Association for the Study of Liver Diseases (AASLD); November 4-8, 2022; Washington, DC/Virtual. Poster 2666.

Obeticholic acid for the treatment of nonalcoholic steatohepatitis

Lancet, The, 2019-12-14, Vol394, Issue 10215, Pages 2184-2196

The approach to NAFLD

Good and bad drugs for the liver

Good

- NSBB –Carvedilol lower portal pressure and prevent deterioration in cirrhosis with portal HTN
- ACE, ARB
- GLP1 Agonists
- SGLT2 Inhibitors
- Metformine

Safety concerns

- Amiodarone
- DDI
- Ritonavir+statins
- Atorvastatin+ clopidogrel
- Alcohol !

Statins

- Safe in Patients with Chronic Liver Disease
- Pharmacokinetics of Statins are Altered in Cirrhosis
 - <u>Rosuvastatin and pravastatin</u> minimal liver metabolism
- Safe in Compensated Cirrhosis
- True Hepatotoxicity is Rare

Study name	Risk ratio	Lower limit	Upper limit	P-value	Statins	Placebo	Risk ratio and		nd 95%	6 CI
Abraldes 2016	0.87	0.51	1.50	.63	17/69	22/78	1			-
Pollo-Flores 2015	0.58	0.37	0.91	.02	8/14	20/20		→	-	
Abraldes 2009	0.76	0.57	1.02	.07	19/28	24/27		-		
	0.73	0.59	0.91	.01	44/111	66/125				
							0.2	0.5	1	2
							Decreased		Incre	ased

risk

risk

Bibliography

- Nonalcoholic Fatty Liver Disease and Cardiovascular Risk: A Scientific Statement From the American Heart Association Arterioscler Thromb Vasc Biol. 2022;42:e168-e185. DOI: 10.1161/ATV.00000000000153
- American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings Co-Sponsored by the American Association for the Study of Liver Diseases (AASLD) Endocrine Practice 28 (2022) 528e562
- Nonalcoholic Fatty Liver Disease and the Heart JACC State-of-the-Art Review

VOL. 73, NO. 8, 2019