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PREAMBLE:  

This is an expert consensus document created to provide information about the current 

use of cardiovascular computed tomography (CT) in patients of all ages with proven or 

suspected congenital heart disease (CHD). The discussion and recommendations are 

based on available literature and the judgment of a diverse group of subspecialists with 

extensive experience in the use of CT imaging in CHD.  The field of CHD CT imaging is 

evolving rapidly with the availability of new scanner technology. In addition, the 

prevalence of palliated CHD has increased with marked improvements in patient 

survival. We believe it is important to review the clinical indications, strengths, 

limitations, and risks of cardiovascular CT in this patient population. This is the first of 

two complementary documents. It will concentrate on the disease entities and 

circumstances in which CT may be used. The second document will focus on 

recommendations for the technical performance of cardiovascular CT in patients with 

CHD.  

Successful cardiovascular CT imaging of CHD requires an in depth 

understanding of the core teaching elements of both cardiology and radiology. The 

ability to perform and interpret high quality congenital cardiovascular CT in a clinical 
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context requires focused time and effort regardless of the previous background of the 

cardiac imager. This is reflected by a writing committee that consists of pediatric and 

adult radiologists and cardiologists, all whom have extensive experience in performing 

CT in this patient population.  Cardiovascular CT is complementary to other imaging 

modalities and its optimal use will be in centers where all diagnostic modalities are 

available. The choice of modality for an individual patient should be determined by age, 

diagnosis, clinical condition, clinical question and patient preference.1-4 Use of CT in 

CHD should be reserved for situations in which it is expected to provide unique 

diagnostic information for the individual patient or clinical indication, and/or less risk 

than other modalities. This multi-disciplinary document is intended to guide the optimal 

selection of CHD patients for cardiovascular CT.  

The goals of this document apply to both pediatric and adult CHD patients and are to:  

1) Review the current use of cardiovascular CT  

2) Assess the most up to date information on risks, benefits, as well as limitations of 

cardiovascular CT  

3) Provide disease-specific indications for cardiovascular CT imaging  

4) Outline a consensus opinion on the essential skills and knowledge needed to 

optimally perform and interpret cardiovascular CT  

 

INTRODUCTION:  Why CT is increasingly used in CHD  
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Changing CT Technology:  

The first clinical CT scanners had limited use for cardiac applications due to poor spatial 

and temporal resolution, and long scan times. There has been a marked improvement 

in CT scanner technology in the past decade. Current generation multidetector CT 

(MDCT) scanners allow rapid coverage of large anatomic volumes, submillimeter 

isotropic spatial resolution and temporal resolution as low as 66 msec. These advances 

provide diagnostic images of small cardiovascular structures, even at the high heart 

rates encountered in a pediatric population.5-13  Data acquisition now requires only a 

portion of the cardiac cycle or at most several cardiac cycles.  The highest pitch scan 

modes and volumetric scanners provide full anatomic coverage of a pediatric thorax in 

less than a second or a single heartbeat, freezing respiratory motion. This rapid image 

acquisition eliminates or reduces the need for sedation and anesthesia in those unable 

to cooperate with a short breath hold.10, 14 The prospective delivery of radiation to a 

limited portion of the cardiac cycle and post processing approaches such as iterative 

reconstruction allow for significantly reduced radiation doses while maintaining or 

improving image quality.15-17   

The use of cardiovascular CT has been described in patients of all ages with 

cardiac malformations of all levels of complexity. Detailed coronary artery imaging is 

possible in nearly every patient using a current generation CT scanner. Retrospectively 

ECG gated scans may be performed for quantification of ventricular function with an 

accuracy that is equal to cardiovascular magnetic resonance (CMR), the modality most 

often used as the reference standard.18  Non-cardiovascular anatomy, including airway, 
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lung parenchyma, and skeletal anatomy is clearly seen. Cardiovascular CT also 

provides excellent visualization of stents, conduits, and metallic objects and can be 

performed in patients with implanted pacemakers and defibrillators.19  

Limitations of cardiovascular CT include poor myocardial tissue characterization, 

inability to quantify valve regurgitation in patients with more than one regurgitant lesion 

or shunt, and exposure to ionizing radiation. Additionally, intravenous administration of 

iodinated contrast with its attendant risks is required in almost all patients for vascular 

opacification. Although breath holding is no longer required for many indications on high 

pitch and volumetric scanners, it is still needed for images acquired over several heart 

beats, including functional imaging and detailed coronary artery imaging at high heart 

rates. For this reason anesthesia is still required for specific indications in young or 

critically ill patients who are unable to cooperate with breath holding.  

Advanced diagnostics in the current era are primarily non-invasive, and 

cardiovascular CT is increasingly used as an adjunct to echocardiography when CMR is 

considered high risk, contraindicated, or unlikely to provide images suitable-quality to 

answer the clinical question.20, 21  

Changing Patient Population and Diagnostic Paradigm:  

Congenital heart disease is the most common congenital anomaly.  Survival after 

surgical intervention for all forms of CHD is now expected for most patients.22-25 The 

Society of Thoracic Surgeons database reports a national overall mortality for all CHD 

operations of 3.5% for 2010-2013.26 The average age of patients with CHD is 
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continually increasing and has reached adulthood. In fact, 2/3 of patients with CHD are 

now adults, and the number of those reaching ≥ 60 years of age is increasing rapidly.24, 

27-29 Much of the cardiac morbidity occurs in older patients; and mortality in CHD has 

shifted from infants towards adults.22, 29-31 These complex patients often have residual 

hemodynamic lesions requiring repeat intervention throughout life, and therefore, 

require close surveillance and have high utilization of health care resources.32,33  

It is widely recognized that catheterization is no longer required for the diagnosis 

and management of most forms of CHD.  It is now reserved for patients needing 

invasive hemodynamic evaluation or catheter based intervention.34 Non-invasive 

imaging can establish the details of anatomy with the degree of certainty required for 

surgical intervention for most CHD indications.35-38  The availability of cardiovascular CT 

and CMR that is supervised, performed, and interpreted by physicians with expertise 

and training in congenital heart disease has become an essential component of regional 

pediatric and adult CHD centers.23 

Echocardiography remains the standard initial imaging modality in CHD, and has 

excellent diagnostic accuracy when performed by skilled practitioners.20, 35 

Echocardiography routinely visualizes intracardiac anatomy, and is both portable and 

widely available. A significant limitation of echocardiography is its poor reproducibility in 

quantifying single or right ventricular size and systolic function and valve regurgitation.39, 

40 Echocardiography is often unable to adequately assess distal pulmonary arteries, 

complex systemic or pulmonary venous anatomy, and cavo-pulmonary anastomoses in 

patients with single ventricle physiology.39, 40 Given the reliance on transmission and 
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receipt of ultrasound energy through the chest, echocardiographic images may be 

inadequate due to limitations of the “acoustic window” in patients with large and small 

body habitus, or those with scoliosis, metallic implants, or other alterations in the chest 

wall.   

CMR is the modality most often used as an adjunct to echocardiography for CHD 

when further information is needed.20, 21, 41 It is excellent for 3D visualization of complex 

anatomy, reproducible quantification of single and right ventricular function, 

quantification of valve regurgitation, myocardial tissue characterization and stress 

imaging.42-46  CMR is considered the standard for quantification of ventricular size, 

systolic function and valve regurgitation to which other modalities are compared. CMR 

uses no ionizing radiation, and gadolinium-based contrast is needed for angiography 

only where the non-contrast 3D sequences are inadequate.  In institutions with access 

to both cardiovascular CT and CMR, CMR is used more commonly due to the favorable 

risk profile and excellent diagnostic quality for most indications and patients.20  

Although advances such as real-time cine imaging,47 single heartbeat delayed 

enhancement imaging48 and highly accelerated parallel imaging49 allow completion of 

even the most complex CHD patients within 1 hour, CMR still usually requires relatively 

long imaging times.50, 51  Children younger than eight years of age, and developmentally 

delayed patients of all ages require sedation or anesthesia for the MR study. 

Intravenous (IV) gadolinium contrast is needed only for certain indications. Due to the 

risk of nephrogenic systemic fibrosis, its use is contraindicated in patients with acute or 
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chronic severe renal (kidney) disease defined as glomerular filtration rate < 30 

mL/min/m2; or renal dysfunction due to the hepato-renal syndrome.52-54  

Many patients with CHD require placement of metallic devices such as coils and 

stents that may degrade CMR image quality due to susceptibility artifact. The 

combination of an endovascular coil and a stent has been shown to decrease the 

diagnostic utility of CMR in Fontan patients to <10%.55 Pacemaker and defibrillator use 

is common in patients with CHD.19, 56-58 While MRI safe pacemakers are now available 

and some non-pacemaker dependent patients with older devices may undergo MRI,59, 60 

imaging artifact from the device may continue to obscure anatomy, such as epicardial 

devices with leads directly adjacent to the heart.61  

 

SYSTEMATIC REVIEW OF THE USE OF CT IN CHD 

CT has been used to assess complex CHD for over two decades. There are many 

excellent comprehensive review articles on the use of cardiovascular CT for the pre- 

and postoperative evaluation of patients of all ages with congenital cardiovascular 

disease.1, 3, 5, 7, 62-73 Cardiovascular CT has been used for detection and follow-up of 

extracardiac vascular lesions, intracardiac lesions, and pericardial diseases.2-4, 7, 16, 69, 74-

89 The next section provides a lesion-specific review of the use of CT for the most 

commonly referred CHD diagnoses.  

Coronary Imaging 
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Coronary CTA is well established in adult patients for coronary artery imaging.90-93 The 

Society of Cardiovascular Computed Tomography has established guidelines for both 

the acquisition and reporting in coronary artery CT for atherosclerotic heart disease in 

adults.94, 95  Increasing evidence supports coronary CT for evaluation of the coronary 

arteries in patients with pediatric and congenital cardiovascular disease, including 

congenital coronary anomalies, coronary fistula, Kawasaki disease, and after CHD 

surgical repair requiring coronary artery manipulation.96-109   

Use of CT for congenital coronary artery anomalies 

Congenital coronary anomalies are the second most common cause of sudden death in 

young athletes110, 111 and are present in 0.2-2% of the population.112, 113 

Echocardiography can accurately diagnose coronary anomalies in children when 

performed by a skilled echocardiographer, but it is limited in its ability to fully 

characterize coronary anatomy in many adult patients and is prone to false 

negatives.114-117  Coronary artery dominance, angulation from the aortic root, ostial 

narrowing and presence and length of intramural course cannot be reliably determined 

by echocardiography. These anatomic features are considered by some to be linked to 

prognosis.  Precise anatomic definition with advanced imaging aids in surgical planning 

when indicated.118-120  Coronary CTA in patients of all ages with coronary anomalies is 

well described  and has superior accuracy for this indication because of the ability to 

simultaneously visualize the coronary arteries as well as the great vessels.117, 119, 121-127 

CMR has been shown to be useful for congenital coronary anomalies in older children 

and adolescents, but is less useful in the youngest patients because image quality is 
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inversely related to both patient age and heart rate.128, 129 Also, CMR is often unreliable 

in the evaluation of the distal coronary artery anatomy to determine coronary dominance 

in young  patients.128, 129 Coronary anomalies are common in patients with CHD, and 

precise anatomic definition prior to surgical intervention is often indicated since it may 

alter the surgical course.130  Current guidelines recommend that all patients that have 

previously undergone surgical coronary artery manipulation have complete 

angiographic assessment at least once in adulthood, and that intervention on the RVOT 

should be preceded by unambiguous definition of coronary artery anatomy.23 The 

modality chosen for coronary assessment will depend on the age of the patient and 

institutional capabilities. See lesion-specific sections below for additional detail (TOF, 

transposition complexes).  

Use of Coronary CTA for Acquired Coronary Artery Disease in Pediatric and CHD 

Patients: 

As long term survival in CHD continues to improve, patients may acquire coronary 

artery disease that can affect outcome for congenital surgeries performed in adulthood, 

and concomitant CABG may be required.27,131 Cardiac CTA is useful for simultaneous 

evaluation of congenital anatomy and of coronary arterial pathology in adult patients 

with symptoms that may be attributable to coronary artery disease. High risk CHD 

patients undergoing cardiac intervention should have preoperative evaluation of the 

coronary arteries.23  
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Kawasaki disease (KD) is the most common acquired cardiac disease in children 

in the United States. Despite adequate treatment, 3-5% percent of patients develop 

coronary artery aneurysms or ectasia.132  While aneurysms in these patients are 

frequently identified in the proximal coronary arteries on transthoracic echocardiography 

by a skilled pediatric echocardiographer, commonly-occurring mid and distal coronary 

artery aneurysms and coronary stenoses are poorly visualized.98-104 In long-term follow-

up, patients with a history of KD and aneurysms may develop coronary stenoses, 

occlusions, calcifications, thrombi and embolic infarction.132 Coronary CTA offers 

comparable accuracy to conventional coronary angiography105, 106 which has historically 

been considered the reference standard for evaluation of coronary aneurysms and 

stenoses in patients with KD. Recent reports of both calcification and plaque 

identification by coronary CTA in high risk patients with a history of KD may identify a 

subset of patients at higher risk of future adverse event.107 CMR is described for 

definition of coronary aneurysm, but is less sensitive than coronary CTA for 

identification of stenoses, calcifications, ectasia, and distal coronary artery disease.105, 

108, 109 

 

Thoracic Vasculature Abnormalities (Pulmonary/systemic venous abnormalities, 

aortic/pulmonary arterial anomalies and vascular rings/slings):  

Cardiovascular CT evaluation of pulmonary venous anomalies is well described and has 

been shown to be highly specific when compared to operative findings.133-136  
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Cardiovascular CT is accurate for determining the site of anatomic obstruction in 

anomalous pulmonary venous return and for the diagnosis of pulmonary vein 

stenosis.137-142 Systemic venous anomalies are also well visualized by cardiovascular 

CT.143-145  

Cardiovascular CT has also been shown to accurately visualize congenital aortic 

anomalies including interrupted aortic arch and aortic coarctation in both pediatric and 

adult patients.146-153 It is particularly useful for evaluation of the aortic arch after 

endovascular intervention (stent or stent graft) where aneurysm, aortic wall injury or 

recurrent arch obstruction are relatively common.154-159  It is recommended that every 

patient with repaired or unrepaired aortic coarctation have comprehensive evaluation of 

the thoracic aorta, and that those who have undergone intervention should undergo 

serial evaluation by cardiovascular CT or CMR throughout adulthood.23   

Cardiovascular CT may be considered the optimal diagnostic modality for 

evaluation of suspected vascular rings and slings, and for assessment of vascular 

anatomy and associated tracheobronchial narrowing.  The ability of cardiovascular CT 

to simultaneously image vascular structures and airway structures makes it an ideal 

imaging modality prior to surgical intervention. In addition to detailing the precise 

anatomy and measurements, cardiovascular CT allows the imager to describe and 

quantify involvement of the trachea and bronchi including assessment for complete 

cartilaginous rings. Multiple groups have shown that cardiovascular CT accurately 

characterizes tracheomalacia and vascular anatomy resulting in airway compression 

pre- and postoperatively in patients with symptomatic thoracic vascular anomalies.147, 
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148, 160-168  In symptomatic patients seeking surgical relief, CT facilitates planning of the 

surgical approach and helps determine whether tracheal reconstruction or aortopexy will 

be necessary as well.169 

Cardiovascular CT is well established in the evaluation of pulmonary artery 

anomalies. Ductal continuation of the pulmonary artery with subsequent ductal closure 

and pulmonary artery isolation is optimally imaged with CT since the lung parenchyma 

and associated anomalies can be evaluated.170 This lesion can be asymptomatic into 

adulthood.171-174  Abnormal arterial supply to the lung segments such as seen in scimitar 

syndrome with sequestration is also well seen by cardiovascular CT.175-178 

Cardiovascular CT is the imaging modality of choice to determine anatomic substrate 

and interventional planning for complex lung lesions such as intralobar or extralobar 

pulmonary sequestration.179, 180 In a study evaluating the utility of cardiovascular CT for 

surgical planning in these patients, treatments were correctly planned using 

cardiovascular CT with 100% accuracy, sensitivity and specificity.181 

 

Septal Defects, Including ASD/VSD/AVSD: 

Advanced imaging is rarely needed to evaluate atrial or ventricular septal defects unless 

associated with systemic or pulmonary venous anomalies.  Cardiac CT may be 

considered prior to device placement in patients with large atrial septal defects (ASD) 

who have poorly visualized inferior-posterior rims on echocardiography.182  The 

retroaortic course of an anomalous circumflex coronary artery from the right facing sinus 
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can be identified prior to device placement additionally. CT evaluation of atrial and 

venous anatomy in symptomatic patients after Amplatzer device occlusion of ASD has 

been reported.183 The region of patch closure of a septal defect may become calcified 

with aging. Since these lesions are the most common congenital cardiac abnormalities, 

previously unrecognized septal defects may be first identified by cardiac CT in patients 

undergoing scanning for other indications.184  Relief of left ventricular outflow tract 

obstruction and AV valve revision or replacement are the most common re-interventions 

after repair of atrioventricular septal defects (AVSD).185-188 Cardiac CT may be useful in 

these patients when echocardiography is not fully diagnostic, although literature 

regarding cardiovascular CT specific to this diagnosis is not reported.  

 

Tetralogy of Fallot (TOF with pulmonary stenosis or pulmonary atresia):  

The anatomic targets assessed with cardiovascular CT in patients with tetralogy of 

Fallot (TOF) include main pulmonary arteries and pulmonary conduits, branch 

pulmonary arteries, aorto-pulmonary collaterals, postoperative shunts, coronary 

arteries, and the aortic root.189-196  Multimodality imaging is often needed for complete 

assessment and serial evaluation in these patients.  MRI is considered by many experts 

to be the modality of choice for investigation after TOF repair unless detailed coronary 

imaging is needed.197  

The ability to reliably visualize pulmonary arterial supply makes cardiovascular 

CT an excellent imaging modality in patients with TOF who are not adequately imaged 
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by echocardiography prior to repair, particularly in those with pulmonary atresia. 

Pulmonary blood flow in patients with TOF with pulmonary atresia (TOF-PA) may be 

supplied via a patent ductus arteriosus, aorto-pulmonary collaterals or both. In 

comparison to conventional angiography, cardiovascular CT has excellent accuracy in 

defining aorto-pulmonary collaterals in these patients prior to surgical unifocalization.195, 

198, 199 On the other end of the spectrum, TOF with absent pulmonary valve, which is the 

least common form of tetralogy, often has severe pulmonary artery dilation. This dilation 

may causes bronchial compression, which is well visualized by cardiovascular CT as is 

any associated air trapping.164 

After complete repair of TOF, patients with residual pulmonary regurgitation often 

develop right ventricular dilation and dysfunction. Furthermore, during adulthood 20% of 

patients with repaired TOF develop left ventricular systolic dysfunction which may 

improve after pulmonary valve replacement.200-202 Right and left ventricular size, systolic 

function and pulmonary regurgitant fraction are routinely evaluated in order to determine 

the optimal timing and type (surgical or catheter based) of pulmonary valve or conduit 

replacement.203-205 Adult patients with repaired TOF are at increased risk of sudden 

death after the second decade of life and many eventually meet criteria for placement of 

a defibrillator, making CMR a relative contraindication.206-208 For these select patients 

who are contraindicated for CMR, cardiovascular CT assessment of ejection fraction 

and ventricular volumes provides comparable information.209-212 In the absence of 

shunts or other significant valve disease, pulmonary regurgitation can be estimated from 

differences between right and left ventricular stroke volumes.   Stroke volume 
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differences to estimate pulmonary regurgitation has been reported with adequate 

correlation to 3Tesla MRI in this patient subset. 213  Careful correlation to 

echocardiography should be used when interpreting stroke volume differences to 

determine valvular regurgitation since flow sequences cannot be used to verify findings 

as in MRI. If both tricuspid regurgitation and pulmonary insufficiency are present, the 

total stroke volume can be reported but not the severity of each lesion. 

 Methods for trans-catheter pulmonary valve placement have been developed for 

those who meet criteria for intervention. These valves have been primarily used in 

previously placed conduits with a diameter of 16 mm or larger.  Recently they have 

been placed in the native right ventricular outflow tract (RVOT) and in smaller patients. 

214-216 Precise anatomic definition is required for optimal valve sizing and successful 

valve placement.  

Congenital coronary anomalies are relatively common in patients with TOF, and 

it is important to define the coronary anatomy prior to surgery; particularly in patients 

with an anomalous coronary that crosses the RVOT.217 A preoperative study in 100 

patients under one year of age with TOF demonstrated that cardiovascular CT provided 

100% sensitivity and specificity for coronary artery anatomy compared to surgical 

findings, with a radiation dose less than 1 mSv.189   Coronary artery anatomy must be 

clearly defied prior to repeat intervention on the RVOT.23  This is essential in patients 

undergoing repeat sternotomy with a substernal coronary artery, and also for those 

being considered for transcatheter pulmonary valve placement due to potential for 

coronary artery compression with device placement.218-220  It is important to recognize 
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that the aortic root is commonly dilated in patients with TOF, measuring ≥40 mm in 

28.9% of patients in a recent multi-institutional study.221 Aortic root dimensions should 

be measured and reported in all TOF patients whenever a cardiovascular CT is 

performed.  

Transposition Complexes:  

Atrial Switch (Mustard or Senning Procedure):  

The atrial switch was the procedure of choice for d-transposition of the great arteries (d-

TGA) prior to development of the successful coronary artery reimplantation techniques 

that facilitate the arterial switch operation. Most patients who have undergone the atrial 

switch are young- to middle-aged adults. In these patients, systemic right ventricular 

(RV) failure and tricuspid regurgitation are common and are the primary predictors of 

mortality. For this reason, measurement of systemic RV function is critical, and recent 

guidelines are based on quantitative evaluation of ejection fraction.222,223  The 

pacemaker insertion rate is relatively high in this patient population, with a minority of 

patients in sinus rhythm 20 years after intervention.224,225 Complete, pre-procedural  

assessment of systemic venous anatomy to facilitate potential placement of stents or 

devices is recommended. In a single-center catheterization study, over 50% of patients 

had baffle complications; and pre procedural echocardiograms had a positive predictive 

value of only 37% compared to catheterization findings, underscoring the need for 

improved pre-procedural diagnostics.226 In a large cohort of adult patients who had 

undergone atrial baffle creation, systemic venous baffle obstruction rate was 
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significantly higher for patients who had undergone a Mustard vs Senning operation 

(risk ratio 3.5).227, 228 Cardiovascular CT is able to visualize systemic and pulmonary 

venous baffles and identify baffle obstruction, evaluate RV size and function, and 

estimate tricuspid regurgitation using stroke volume differences from functional 

analysis.209,229-232 If stroke volume differences are used for estimation of regurgitant 

fraction, findings must be correlated with echocardiographic Doppler evaluation. Baffle 

leaks are difficult to reliably visualize using cardiovascular CT unless there is differential 

opacification showing a negative or positive contrast jet between the atria. This is 

problematic when a biventricular contrast injection protocol is used and there is similar 

contrast density in both atria.  Cardiovascular CT has been described for follow-up 

evaluation of both baffle stents and EP device placement.231 Another potential indication 

for cardiovascular CT in this population includes pacemaker dependent patients who 

are referred for cardiac resynchronization therapy. Pre-procedural evaluation of 

coronary sinus and coronary venous anatomy by cardiovascular CT can help determine 

the procedural approach for EP device lead placement.233,234  

Arterial Switch:  

The arterial switch operation (ASO) for d-TGA was first described by Jatene in 1975, 

and has been widely applied since the 1980s.235 The first patients to undergo arterial 

switch are now young adults. With d-TGA, abnormalities of coronary origin and course 

are common and impact immediate and long-term surgical outcomes.236 Overall, 

survival after an ASO is excellent. Nevertheless, late deaths resulting from coronary 

ischemia and arrhythmias have been documented, and the rate of reintervention is 
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relatively high.237-239 Major complications that may occur after the arterial switch 

operation include coronary ostial stenosis, neo-pulmonary artery and branch pulmonary 

artery stenosis, and neo-aortic root stenosis, dilatation or insufficiency. The most 

common indication for intervention is for relief of supravalvar pulmonary stenosis.240  As 

noted above, cardiovascular CT performs well for visualization of the all aspects of the 

right ventricular outflow tract, and branch pulmonary arteries. 

Since myocardial perfusion via reimplanted coronary arteries is the primary 

determinant of mortality and long-term outcomes in these patients, imaging of the 

coronary anastomoses is recommended in symptomatic patients, as well as at least 

once during adolescence or early adulthood in asymptomatic patients.23,241, 242 A recent 

cardiovascular CT evaluation of 190 patients 5-16 years of age found 8.9% of patients 

with coronary lesions (defined as > 30% narrowing to occlusion) confirmed by invasive 

angiography.243  Other studies have shown similar rates of coronary compromise, 

primarily in asymptomatic children.241,244,245 Cardiovascular CT has been shown to be 

highly accurate in evaluating coronary arteries before and after an ASO.130,245,246 No 

accepted standard for routine interval coronary evaluation exists. Cardiovascular CT 

evaluation of coronary artery stenosis after the ASO has been shown to correlate well 

with invasive angiography, and is preferred since catheter placement may alter the 

coronary ostium. CT also provides information on the underlying mechanism of 

coronary luminal narrowing.245 Evaluation after bypass grafting for coronary stenosis 

resulting from an ASO in children using cardiovascular CT has been reported as well.247, 

248   
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Complex Transposition Repair (Rastelli and Nikaidoh): 

In some patients with complex transposition, such as those with d-TGA with a VSD and 

left ventricular outflow tract obstruction or certain patients with double outlet right 

ventricle, an ASO is not feasible. The Rastelli procedure is the most common surgical 

intervention in this situation. This includes closure of the VSD using a patch from the 

crest of the ventricular septum to the distant aorta and placement of a right ventricle to 

pulmonary artery conduit. As with all other forms of surgery requiring placement of a 

conduit, there is potential for stenosis or insufficiency of the conduit, and the relationship 

of the coronary arteries should be evaluated prior to repeat intervention.  A multi-

institutional study performed in 2010 revealed a survival of 58%, and an event free 

survival of 26%, at 20 years after a Rastelli procedure.249 There is a relatively high re-

intervention rate for both right and left ventricular outflow tract obstruction, and a 

majority of patients will require pulmonary conduit replacement.249-251  The pathway 

between the left ventricle and aorta may become obstructed, and determining the 

anatomic substrate is crucial to determine the method of intervention, when indicated. 

The Nikaidoh procedure, which has gained popularity in recent years, is a procedure in 

which the aorta is translocated closer to the VSD. Since the aorta must be moved 

leftwards towards the VSD, right coronary artery lesions are a potential complication.252-

254 All of the anatomic lesions seen after the Rastelli and Nikaidoh procedures can be 

readily assessed with cardiovascular CT, although literature for this indication is limited 

to descriptive case reports.232  

Congenitally Corrected Transposition: 
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Patients with congenitally corrected transposition (also known as l-TGA) have a high 

rate of complete heart block requiring pacemaker placement. The most simple form 

(with no associated intra-cardiac defect) may be first uncovered as an incidental finding 

in CT performed for another indication.255, 256 Cardiovascular CT can be used to assess 

atrial, ventricular and arterial relationships and to evaluate systemic right ventricular 

function.257-259  

  Some patients with l-TGA can be managed without surgery, and those that 

undergo surgery may either have a “physiologic” or “anatomic” repair. The “physiologic 

repair” keeps the right ventricle as the systemic ventricle, occasionally with a left 

ventricle to pulmonary artery conduit, while an “anatomic repair” consists of an atrial 

switch plus an arterial switch or Rastelli procedure. Both surgical options have similar 

medium term outcomes, except for those with significant tricuspid regurgitation, which is 

better tolerated in an anatomic repair with a systemic left ventricle.260 Complications, 

follow-up, and cardiovascular CT imaging are similar to what is described above based 

on type of repair (atrial switch, arterial switch, Rastelli). 

 

Single Ventricle Heart Disease: 

Patients with a functionally single ventricle, including those with tricuspid atresia, 

pulmonary atresia, hypoplastic left heart syndrome, double inlet left ventricle, and 

unbalanced atrioventricular septal defects, generally follow a palliative surgical pathway 

with 2-3 stages. The first stage, if necessary and dependent on the physiology, is 
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performed as a neonate and usually involves a Norwood procedure or systemic to 

pulmonary arterial shunt. Some centers advocate a “hybrid” approach utilizing a 

catheter-placed ductal stent and pulmonary artery bands. The most common systemic 

to pulmonary arterial shunt is the Blalock-Taussig shunt, but right ventricle to pulmonary 

artery shunts (Sano shunt) and central shunts (from ascending aorta) are other common 

types. At 4-6 months of age the shunt is taken down and the superior vena cava is 

anastamosed to the pulmonary artery (Glenn or Hemi-Fontan procedure). With the third 

stage (Fontan completion) the inferior vena caval flow is directed into the pulmonary 

arteries. In the current era, the third stage palliation is typically performed between 18 

months and three years of age. Clinical outcome is dependent upon the morphology of 

the single ventricle and patients with a systemic left ventricle do better during second 

stage palliation, have improved ejection fraction, lower rates of valvular regurgitation 

and fewer long term complications. 261-263  Although patients with a systemic right 

ventricle do not do as well, it is now expected that 70% will survive to adulthood and 

most patients do well clinically.264, 265 A single institution reported a median radiation 

exposure of 25.7 mSv through the Fontan operation using primarily catheter based 

diagnostics.266  

Prior to stage 1 surgery 

While many patients with single ventricle anatomy can be imaged adequately using 

echocardiography prior to stage 1 surgery, cardiovascular CT is occasionally necessary 

to define complex systemic or pulmonary venous, aortic, or pulmonary artery anatomy, 

particularly in patients with atrial isomerism.  Given that pulmonary venous anomalies 
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are a significant risk factor for survival in these patients, it is critical that the pulmonary 

venous anatomy is defined accurately prior to intervention.267-269 Cardiovascular CT is 

excellent for this application, and can be performed with minimal or no sedation in most 

cases. (See section above on thoracic vascular abnormalities).   

After stage 1 surgery (Norwood, systemic to pulmonary arterial shunt, hybrid) 

Between stage 1 and 2 surgery, systemic and pulmonary artery stenoses are relatively 

common, and are often insufficiently visualized with echocardiography.39  Patients with 

systemic to pulmonary artery shunts occasionally experience shunt thrombosis, 

resulting in acute, profound cyanosis. Shunt thrombosis can be challenging to identify 

with echocardiography, but cardiovascular CT, given its easy accessibility and short 

imaging time, is an excellent imaging modality to identify this problem and identify when 

intervention is necessary.270, 271   

In most centers, cardiac catheterization is performed in preparation for a stage 2 

procedure.  A recent comparison of cardiovascular CT and catheterization prior to stage 

2 palliation revealed excellent correlation to surgical findings for both modalities and no 

difference in surgical outcome to hospital discharge.272 The estimated cardiovascular 

CT radiation dose (both age and size adjusted) was 1 mSv compared to a 

catheterization dose estimate of 14 mSv.  Additionally, the catheterization group had 

higher contrast dose, required central vascular access and general anesthesia in all 

cases, and had a relatively high rate of adverse events.  A prior study randomized pre-

stage 2 patients to CMR or catheterization, and found no difference in surgical 
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outcomes or medium term outcomes for patients followed a median of 8 years.273 Some 

centers now propose a completely non-invasive diagnostic pathway for patients with 

single ventricle heart disease through third stage palliation.274, 275 The single ventricle 

patient population is high risk for adverse event with anesthesia.276-278 For single 

ventricle patients that may require anesthesia for CMR, cardiovascular CT may be a 

reasonable alternate imaging modality if performed with no or minimal sedation.  

After Stage 2 surgery (Glenn or Hemi-Fontan procedure) or Stage 3 surgery (Fontan) 

Cardiovascular CT has been shown to adequately visualize all aspects of the Glenn or 

Fontan circuit after single ventricle palliation.279-286 Thrombus formation after the Fontan 

procedure is relatively common, and thrombi have been visualized by cardiovascular CT 

in the Fontan conduit, residual ventricle or in the residual PA stump after pulmonary 

artery ligation.287-290 Pulmonary embolism has also been identified by cardiovascular 

CT.291 Care must be taken, however, to optimize the contrast injection technique both to 

avoid a false positive diagnosis of pulmonary embolism and to optimally opacify the 

Fontan circuit.232, 285, 292 Unopacified venous blood from the hepatics mixing with a lower 

extremity injection, or inferior vena cava mixing with contrast from an upper extremity 

injection can be mistaken as clot or embolism. As with TOF or TGA, quantification of 

ventricular function by cardiovascular CT may be warranted in patients with metallic 

implants and contraindications to CMR. 

 

After Ross Procedure:  
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The Ross procedure is performed for children and adults as an alternative to prosthetic 

aortic valve placement. In this procedure, the pulmonary valve and root are harvested 

and placed in the aortic position, with re-implantation of the coronary arteries and 

placement of a right ventricle to pulmonary artery conduit.  Evaluation after the Ross 

procedure requires visualization of the neo-aortic root, reimplanted coronary arteries 

and pulmonary conduit.  As stated in prior sections above and in additional publications, 

cardiovascular CT performs well for these indications.293-296   

 

Other Complex CHD (Stent, VAD, ECMO): 

Cardiovascular CT may be considered for determination of stent integrity, diagnosis of 

aneurysm and other complications of stent placement and assessment of either airway 

or coronary compression from mass effect after intravascular intervention for aortic or 

pulmonary abnormalities.157, 297-301 Evaluation of coronary and vascular stents using 

cardiovascular CT is highly accurate when compared to traditional angiography.157, 298, 

302-304 Beam hardening artifact and the partial volume effect may degrade in-stent 

evaluation for vessels less than 3 mm, although iterative reconstruction and appropriate 

kernel selection can improve image quality.305-307 Pediatric vascular stents were 

evaluated in an in vitro model found excellent correlation to conventional angiography in 

pediatric patients, despite at low tube potential settings and small stent sizes.298 

Cardiovascular CT also provides diagnostic information (cannula positions, 

presence of thrombus, driveline infection) in patients on ECMO or with ventricular assist 
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device (VAD) support, a population in whom conventional imaging may be 

challenging.308, 309  

 

Use of CT for Functional Imaging 

Echo and CMR are first line non-invasive modalities to assess ventricular function in 

patients with CHD, with cardiac CT offering an accurate alternative for this application in 

patients with CHD when contraindications or limitations to these modalities exist.211, 212, 

310  Heart Failure is increasingly common in adults with CHD and serial evaluation is 

sometimes needed to help with medical management and advanced therapy 

decisions.311 

Cardiac CT may be used for ventricular function analysis when data acquisition 

(“ECG trigger or ECG gating”) and image reconstruction are synchronized to the ECG 

and then reconstructed in a multiphase dataset. With a retrospectively ECG-gated 

helical protocol, ECG-based tube current modulation allows full radiation during a 

specified short portion of the cardiac cycle while tube current is reduced during the 

remainder of the cardiac cycle. This dose modulation protocol allows reconstruction of 

an end systolic dataset with sufficient image quality to detect the endocardial contours 

in addition to a high quality diastolic dataset.  Prospectively ECG-triggered datasets can 

also be used for functional analysis, as long as the data acquisition window captures 

both end-systole and end-diastole. Several publications have demonstrated that both 

right and left ventricular systolic function can be measured by cardiac CT with accuracy 
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comparable to CMR.18,257,312-316  An assessment of MRI vs DSCT found that the function 

results were considered interchangeable.210, 317, 318 When estimates of ventricular 

volumes and calculation of ejection fraction were compared to known volumes using a 

moving heat phantom and standard clinical imaging protocols, DSCT performed better 

than both MRI or 64 slice CT.  The accuracy of 64 slice CT was dependent on heart 

rate, however.319  The accuracy of CT for functional analysis will depend on the 

temporal resolution available on the scanner platform and scan sequence used. For 

functional imaging, beta blockade is not typically required unless high resolution distal 

coronary imaging is also needed from the fully radiated phase of the dataset.  

Since 7-10 mm slice thickness is sufficient for both RV and LV quantification, 

lower-dose scans yield evaluable datasets for this purpose.320, 321 Heart failure 

associated with ventricular pacing is the largest indication for biventricular pacing in 

pediatric patients and CHD.322  Cardiac CT has been shown to evaluate regional wall 

motion associated with ventricular pacing in a small cohort of patients.323 

Valvular stenosis, regurgitation, prosthetic valve and perivalvular leak: 

Many patients with CHD need repeat valve intervention, commonly on more than one 

valve.131  In young patients undergoing mitral valve replacement, 50% will require re-

replacement within 10 years, and 15% require pacemaker placement within one month 

of valve placement.324, 325 There are several studies showing the utility of cardiac CT for 

evaluation of native and mechanical valve stenosis and insufficiency, perivalvular leak, 

thrombosis, abscess and endocarditis.326-333 Stroke volume differences between 
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ventricles calculated from a functional dataset may be used to quantify the severity of 

valvular regurgitation if correlated closely with echocardiographic findings.213 

 Quantification of regurgitation is not possible in single ventricle patients or in 

patients with more than one regurgitant lesion or intracardiac shunt.  The total difference 

in stroke volume is evaluable, with reliance on other modalities for assessment of the 

contribution of each lesion (see section on function imaging). Assessment of coronary 

artery anatomy in relationship to the mitral valve (occasionally supraannular) is needed 

for surgical planning at the time of replacement. In patients with pacemakers or 

previously replaced mechanical valve, complete pre-operative assessment of anatomy, 

including coronary artery anatomy, is often required and can be performed with 

cardiovascular CT. 

Sternal Re-entry in High Risk Patients 

It has long been appreciated that reoperation in patients with CHD carry increased risk 

of serious vascular injury upon sternal reentry, sometimes requiring emergent peripheral 

cannulation for cardiopulmonary bypass.334, 335 While a recent study suggests that the 

risk has decreased with improved surgical techniques, presence of right ventricle to 

pulmonary artery conduits and increasing number of sternotomies remain risk factors for 

injury.336 It is critical to define the proximity of the coronary arteries and cardiac 

structures to the posterior sternum prior to repeat sternotomy for consideration of 

peripheral bypass at the time of sternal entry.337 Some authors advocate cardiovascular 

CT prior to repeat sternotomy in select patients.338 While CMR can identify the 
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relationship between vascular structures and the sternum, artifact resulting from sternal 

wires limits its ability to define this relationship with the clarity afforded by cardiovascular 

CT.   

RISK OF CT IN THE CURRENT ERA:   

Sedation/anesthesia: 

The time required to image the thorax ranges from 0.25 to 10 seconds for 64-320 slice 

CT scanners depending on factors such as the need for ECG gating and scan length.  

The newest generation scanners acquire the dataset in a fraction of a second or a 

single heartbeat, reducing or eliminating the need for sedation and suspended 

respiration for a majority of indications.14 Studies have shown that images acquired 

without sedation in neonates and with conscious sedation in toddlers and young 

children yield adequate to excellent image quality.10, 14 When image acquisition requires 

breath holding, only a single and short duration suspension of respiration is needed.10, 

14,189, 339 Most patients age ≥7 years can reliably cooperate with scanning instructions. 

General anesthesia (GA) may be required for the youngest patients who cannot sustain 

a breath hold when required for scan sequences that acquires data over several heart 

beats. This includes detailed coronary artery imaging at high heart rates and ventricular 

function measurement. When GA is needed, no change in ventilator management or 

specialized equipment is needed for cardiovascular CT acquisition.  For older 

generation scanners with image acquisition times of 6-10 seconds, sedation or 

anesthesia may still be required in children and developmentally delayed patients of any 
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age unable to cooperate with breath hold instructions to eliminate motion artifact even 

for non-ECG triggered scans.   

 In pediatric patients, general anesthesia (GA) confers risks of both procedural 

complication as well as the potential for long-term adverse neurodevelopmental 

outcome.340 In a multi institutional study, those with congenital heart disease in 

anesthesia class 3 or above were at highest risk for a procedural adverse event with 

GA.277, 341 The risk of cardiac arrest with GA is highest in the youngest patients and in 

those with unrepaired single ventricle heart disease, pulmonary hypertension, left 

ventricular outflow tract obstruction and cardiomyopathy.276, 341 In patients with 

congenital heart disease, the risk of GA has been shown to be higher when performed 

outside of the operating room.341, 342  In a study examining the complications associated 

with CMR, the use of GA significantly increased the risk of adverse events, with an odds 

ratio of 3.9.342-344   

Anesthesia exposure in young patients may adversely affect long term cognitive 

and behavioral outcomes, particularly those exposed to prolonged or multiple 

anesthetics before age 2 years.345-351 This concern is most relevant for CHD patients 

who will undergo multiple diagnostic evaluations and palliative interventions in the first 

year of life that will require anesthesia, such as patients who have TOF with pulmonary 

artery atresia or single ventricle heart disease. For patients who do require anesthesia 

the length of anesthesia for a CT study will be much shorter than for either CMR or 

cardiac catheterization.340, 349 
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Infants with CHD referred for advanced cardiac imaging often require vasoactive 

infusions and/or mechanical ventilation in the intensive care unit. CMR in such patients 

requires conversion to MRI-compatible equipment, followed by 1-2 hours of anesthesia 

with multiple breath holding sequences.342 Poor thermoregulation is also a challenge in 

small patients with prolonged anesthesia. CT can be performed quickly, patients can be 

returned to the intensive care unit within 15-30 minutes of leaving, and there is no need 

for conversion to and from specialized equipment. During the scan, patients are more 

accessible during computed tomography.340  CT can even be performed on patients on 

ECMO.308  

Vascular Access:  

IV access is required for contrast administration, usually delivered with a power injector. 

There is a low complication rate (0.2-0.4%) using power injectors with contrast injected 

via many different venous access devices in pediatric patients.352 Power injection 

through central lines using low pressure limits and longer injection times is considered 

safe, but provides inadequate contrast opacification in patients weighing over 30 kg.353  

A more recent study of peripheral IV power injection for CT examinations in children 

using 22 gauge angiocatheters in 443 of 557 children (range 18-24 gauge) at a median 

flow rate of 1.5 ml/sec reported two episodes of contrast extravasations treated 

conservatively (0.3%).354 Safe use of power injectors in neonates at low flow rates has 

been reported.10 

Contrast Exposure:  
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Almost all cardiovascular examinations are performed with iodinated contrast.  Typical 

exams require 1-2 ml/kg of contrast volume.  The rate of adverse reaction from 

iodinated contrast administration is very low in adult patients, ranging from 0.1% to 1% 

in several studies.355-358 In several large reviews of pediatric age range patients the 

incidence of contrast reaction is also low (0.18-0.46%).359, 360 The incidence of contrast 

induced nephropathy is highest in patients with severely reduced renal function and use 

of pre-scan hydration may decrease the incidence of adverse renal effects.361  If CT is 

required in the setting of renal failure, every effort should be made to withdraw 

nephrotoxic drugs, select low or iso-osmolar contrast media, use as little contrast as 

possible, and consider pre-scan hydration.362 Gadolinium-enhanced CT studies have 

been reported in iodine allergic patients and the fairly low k edge of gadolinium is 

particularly suited to reduced kV imaging. 363  

 

Medications to Lower Heart Rate: 

For coronary artery imaging, a heart rate below 60 beats per minute maximizes the 

potential for obtaining high quality images within a single diastolic interval and requires 

the lowest radiation exposure.364, 365 Even with beta blockade the heart rate will be 

elevated in small patients. Significant heart rate variability during the monitoring or 

acquisition phase of certain scan sequences will automatically widen the acquisition 

window. Pre-procedural medication can be used to decrease the overall heart rate or 

the variability with respiration. Different protocols for beta blockade have been 
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described and are effective for decreasing the heart rate and thus the required radiated 

interval of the cardiac cycle.366-368 Protocols specific to children have been described 

with effective heart rate control and excellent safety.10, 369 The safety of heart rate 

lowering medications must be assessed for each patient prior to administration.  

Hemodynamically unstable children may not tolerate the effects of beta blockade and 

are often imaged at their intrinsic heart rate.  For heart rates above 60 beats per minute, 

images with minimum cardiac motion artifact may be obtained during either the end 

systolic or end diastolic phase of the cardiac cycle.  Some scans obtained at higher 

heart rates will require a widened acquisition window and higher radiation doses.370-372   

 

Radiation Exposure:  

Ionizing radiation is fundamental to image creation with CT, and radiation exposure is 

thought to increase the risk of future development of cancer.373-376  A linear no threshold 

model has been adopted for medical radiation exposure. The risk of radiation exposure 

is particularly relevant for young patients due to both their longer expected lifespan and 

greater radiation sensitivity compared to adults. The radiation exposure required for 

cardiac CT has decreased significantly in the last number of years with the introduction 

of a number of dose reduction techniques.377, 378 These include the availability of low 

tube potential (e.g, 70, 80, 90 or 100 kV) settings, ECG-based tube current modulation 

and anatomic-based tube current modulation.10, 11, 13, 379-381 The introduction of iterative 

reconstruction algorithms allow for a reduction in tube current and radiation dose while 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

34 

 

maintaining acceptable noise properties.15, 78, 339, 382-384 Improvements in detector 

technologies have also allowed radiation exposures to be lowered. To achieve a lower 

estimated dose in smaller patients, tube potential and tube current should be adjusted 

to patient size with 70 or 80 kV as the default tube potential. Retrospective ECG-gated 

helical scans should be reserved for evaluation of ventricular function and for detailed 

coronary artery assessment when arrhythmia is present.13, 365, 385, 386  

The most advanced CT scanner platforms can routinely achieve an effective 

radiation dose estimate of less than 1 milliSievert (mSv) for many congenital cardiac 

applications, even when using the size and age adjusted CT dose volume index 

(CTDIvol) and chest conversion factors.10,12, 13,16,17,387  The radiation dose estimate for 

an infant will be increased by a factor of seven over the standard adult estimate if the 

smaller phantom (16 cm vs 32cm) is used to determine CTDIvol, and an age adjusted 

chest conversion factor is used to convert this value into mSv.10,12,13,16,198,387,388 Size 

specific dose estimate (SSDE) is another radiation measurement used by some centers 

to estimate an individual organ dose from scanner output and patient specific chest 

measurements.  The estimated organ dose cannot be used to determine a patient dose. 

389  When pediatric radiation dose estimates are reported, it should be stated which 

phantom size is used to estimate CTDIvol (16cm or 32 cm) and which age and chest 

conversion factors are used. This will allow equivalent comparisons of radiation dose 

estimates despite the variability in reporting of scanner output and calculation of dose in 

pediatric patients.  
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ECG-gated cardiac CT studies have historically yielded higher radiation doses 

using older retrospective ECG triggering techniques.390 A study published in 2011, 

however, shows consistently lower doses for 64-slice CT than for conventional 

angiography.391 A recent study documented a median effective dose of 1 mSv for ECG-

gated helical and ECG-triggered axial coronary CTA in a wide range of pediatric 

patients.10  CT now has the potential to deliver 10-15 fold less radiation than cardiac 

catheterization when used by experienced users at centers with modern 64-slice or 

greater CT scanners and with careful attention to scan parameters.391, 392 However, if 

scan parameters are not carefully adjusted for clinical indication and patient size, 

radiation doses may be significantly higher. A recent publication estimates cumulative 

radiation exposure from cardiac diagnostics for patients less than six years of age, and 

shows relatively high radiation exposure for patients undergoing repeat diagnostic 

examinations such as transplant recipients and those with single ventricle heart 

disease.393  In this study, ECG gated CT scans were estimated to deliver twice the 

radiation dose of cardiac catheterization.  Such findings underscore the importance of 

meticulous attention to dose reduction techniques with every cardiovascular CT 

examination to minimize both procedural and cumulative radiation exposure. Scanner 

output recommendations are often for high resolution coronary artery imaging.  For 

evaluation of larger cardiac structures this level of detail (and radiation dose) are not 

needed for clinical decision making. Congenital cardiac CT imagers should 

communicate with referring cardiologists to determine the minimum image quality 

required that will deliver the diagnostically important information. The image quality 

required for a detailed coronary artery scan is not needed for the majority of CHD scan 
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indications. Recent recommendations suggest that the risks and benefits of cardiac 

imaging should be discussed as part of informed consent, and that radiation parameters 

should be included in procedural reporting.394   

 

RECOMMENDATIONS FOR CT IMAGING IN CHD: 

Cardiac CT will have an important role in the future of congenital cardiac imaging.  The 

tables below summarize consensus recommendations for the imaging environment and 

required knowledge to perform high quality CT in patients with CHD, and clinical 

scenarios where CT may be used.  

 

Table A: Optimal Imaging Environment for Cardiovascular CT in CHD 

All cardiac imaging modalities are available so that the test with the least risk can be 
performed for a specific clinical indication 
Close collaboration & communication is present among surgeons, clinical cardiologists 
and imagers 
All patient clinical information is accessible to allow understanding of the clinical 
indication and potential management options for the patient 
Scan protocols can be designed and adjusted to extract maximum clinical information at 
minimum procedural risk 
Technologists are experienced in cardiac CT and comfortable with varied cardiac scan 
modes 
Easy access to pacemaker programming to allow rate and mode adjustment  

Nursing support to facilitate administration of medication for heart rate control when 
necessary in patients with and without permanent pacemakers, and to provide 
appropriate monitoring for any side effects 
Access to all forms of prior imaging (echocardiography, angiography, nuclear, CMR) so 
that a targeted evaluation may be performed for an individual patient 
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Post processing workstations capable of handling large multiphase data sets for 
advanced reconstructions 
High-speed network to transfer large volume data sets from scanner to workstation 
Immediate availability of advanced resuscitation equipment and resuscitation team 
appropriate for the size and age of the patient  
 

Table B: Relevant Knowledge for the Performance of Cardiovascular CT in CHD  

Cardiology knowledge required 
Anatomy & physiology of CHD – natural and repaired 
Surgical procedures used to palliate or repair CHD 
Catheter interventions used to palliate or repair CHD 
Material composition of the surgical materials or catheter devices used and the artifact 
produced in different  imaging modalities (MRI and CT) 
Common residual hemodynamic lesions following initial CHD repair 
Indications for re-intervention (AHA/ACC/ESC/CCS guidelines) 
Normal coronary anatomy 
Congenital coronary anomalies and the indications for and methods of repair  
Basic ECG knowledge and arrhythmia recognition (and impact on imaging strategy) 
Pediatric and adult doses for heart rate lowering medications and sublingual 
nitroglycerin, and contraindications to these medications 

CT knowledge required 
Experience in congenital cardiac CT in addition to standard cardiac CT training. (For 
adults Level 2 or 3 training, for pediatrics there are no current educational standards for 
cardiac CT) 
Scanning principles and scan modes, including the different capabilities of individual 
scanner platforms 
Contrast injection protocols adjusted for both patient size and cardiac pathology 
Prophylaxis against and treatment of minor and major contrast reactions 
Radiation physics and basics of radiation dose measurement 
Radiation dose reduction strategies and individualized scan planning 
Familiarity and competence with post-processing methods and software 
Familiarity with standards for quantification and reporting in CHD 

Table C: Situations in which Cardiovascular CT may be appropriate in CHD 

Presence of CMR unsafe implant or foreign body (retained pacing leads, non-MR 
compatible pacemaker/defibrillator, neurostimulator) 
Poor CMR image quality (known or expected) due to metallic artifact 
Unable to fit in MRI scanner due to obesity, or severe claustrophobia 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

38 

 

Neonate or young patient requiring evaluation of complex anatomy, particularly if 
considered higher risk for adverse event with sedation or anesthesia required for CMR, 
and the CT scan can be performed with no or limited sedation 
Critically ill patient of any age that may not tolerate breath holding or length of CMR 
scan 
Evaluation of ventricular assist device or ECMO cannula positioning 
Patient requiring CT for evaluation of extra-cardiac anatomy in addition to CHD (e.g. 
lung parenchyma, airway, skeletal abnormality) 
Pre-operative patients with prior sternotomy considered high risk for vascular injury with 
sternal reentry due to an anterior coronary artery, conduit, or sternal adhesions 
Evaluation of prosthetic valve function or structural integrity (calcification, stenosis, 
coaptation defect, leaflet immobility, paravalvular leak, endocarditis or clot) 
Evaluation of calcification within vessels and surgical conduits prior to catheter-based 
intervention (e.g. balloon angioplasty, transcatheter valve replacement, stent 
placement). 
Coronary artery imaging in CHD: 

a) Patient needing detailed pre-operative coronary artery evaluation in addition to 
assessment of complex cardiac anatomy  

b) Patient with symptoms and signs suggestive of atherosclerotic coronary artery 
disease and a history of CHD, prior coronary intervention, or high risk Kawasaki 
disease 

c) Young symptomatic patients with known or suspected coronary anomaly, 
particularly if CMR is unlikely to provide complete assessment or more likely to 
require anesthesia 

d) Delineation of coronary anatomy prior to surgical or percutaneous pulmonary 
valve implantation 

e) Evaluation of coronary artery after any surgery requiring coronary artery 
manipulation or reimplantation  
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