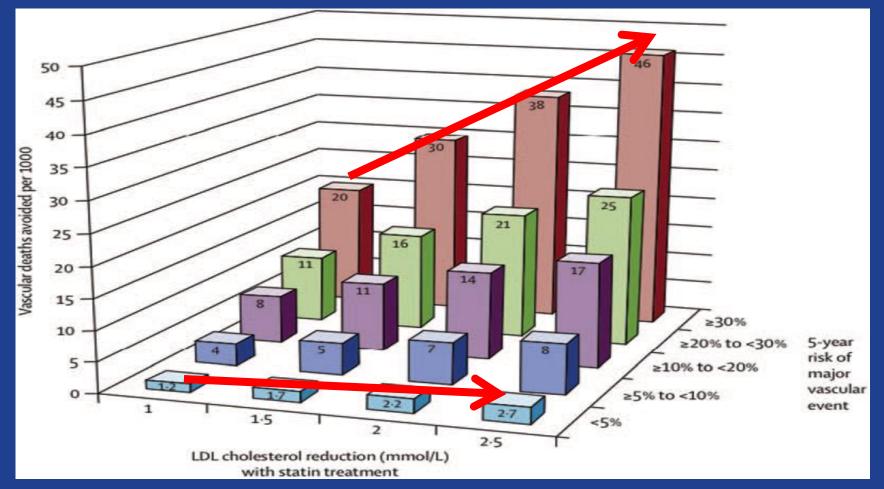
היפרליפידמיה בנשים בעידן החדש – מניעה ראשונית ומשנית

ד"ר רפי ביצור

מרכז שטרסבורגר לליפידים

המרכז הרפואי ע"ש שיבא, תל-השומר

Women and Men are Different... But Also Have a Lot in Common


AHA Scientific Statement

Preventing and Experiencing Ischemic Heart Disease as a Woman: State of the Science A Scientific Statement From the American Heart Association

לפום צערא אגרא משנה, מסכת אבות, פרק ה', משנה כ"ג

Predicted Vascular Deaths Avoided Over 5 Years From Reductions in LDL-C With Statins at Different Levels of CVD Risk

Circulation. 2013;127:1929-1931

AHA Scientific Statement

Preventing and Experiencing Ischemic Heart Disease as a Woman: State of the Science A Scientific Statement From the American Heart Association

IHD prevalence rate lower for women vs. men.

Circulation 2016;133:1302-1331

AHA STATISTICAL UPDATE

Heart Disease and Stroke Statistics 2018 Update

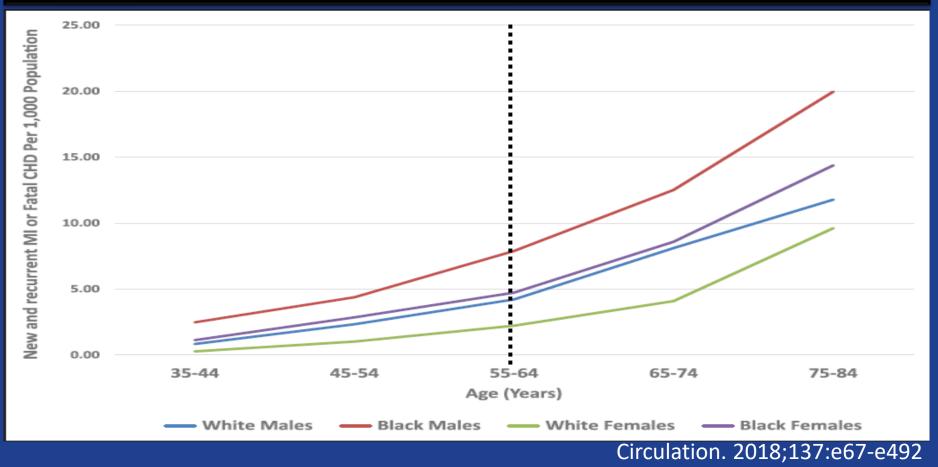
Coronary Heart Disease

Population Group	Prevalence, CHD, 2011–2014 Age ≥20 y	Prevalence, MI, 2011–2014 Age ≥20 y
Both sexes	16500000 (6.3%)	7 900 000 (3.0%)
Males	9100000 (7.4%)	4700000 (3.8%)
Females	7 400 000 (5.3%)	3200000 (2.3%)

Circulation. 2018;137:e67-e492

AHA Scientific Statement

Preventing and Experiencing Ischemic Heart Disease as a Woman: State of the Science A Scientific Statement From the American Heart Association


IHD prevalence rate lower for women vs. men.

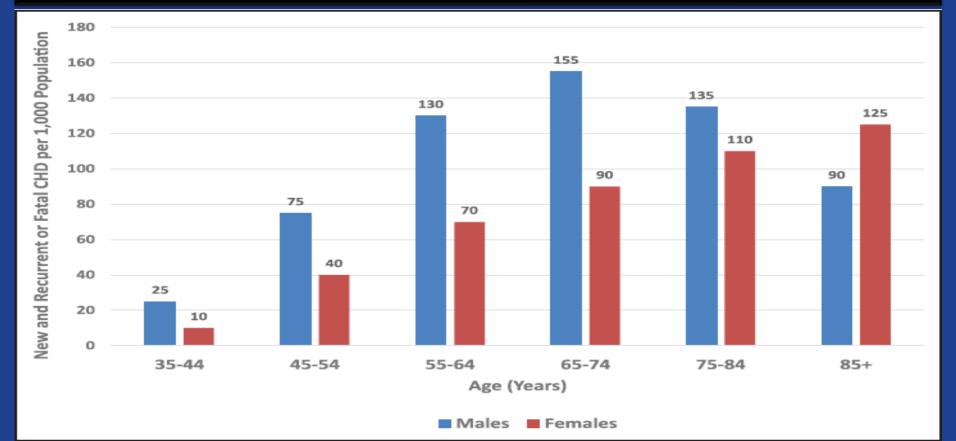
 After age 45 for men and 55 for women, the risk for IHD increases similarly in both groups.

AHA STATISTICAL UPDATE

Heart Disease and Stroke Statistics 2018 Update

Incidence of MI or fatal CHD by age, sex, and race (ARIC Surveillance 2005–2014)

AHA Scientific Statement


Preventing and Experiencing Ischemic Heart Disease as a Woman: State of the Science A Scientific Statement From the American Heart Association

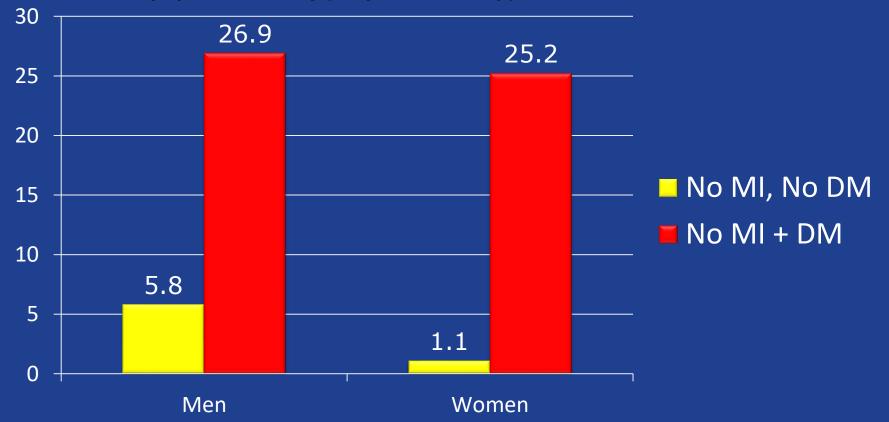
- IHD prevalence rate lower for women vs. men.
- After age 45 for men and 55 for women, the risk for IHD increases similarly in both groups.
- Life expectancy for women is greater than that of men, leading to an aged female population with greater IHD risk

AHA STATISTICAL UPDATE

Heart Disease and Stroke Statistics 2018 Update

Annual number of adults per 1000 having diagnosed MI or fatal CHD by age and sex (ARIC 2005–2014 and CHS).

AHA Scientific Statement


Preventing and Experiencing Ischemic Heart Disease as a Woman: State of the Science A Scientific Statement From the American Heart Association

IHD prevalence rate lower for women compared with men.

- After age 45 for men and 55 for women, the risk for IHD increases similarly in both groups.
- Life expectancy for women is greater than that of men, leading to an aged female population with greater IHD risk
- IHD death rate in younger women 35-44 years of age continues to increase, while it is decreasing in their male counterparts

Loss of Gender Benefit for CHD Mortality in Diabetic Women Without Prior MI

Finnish population study (18-year follow-up)

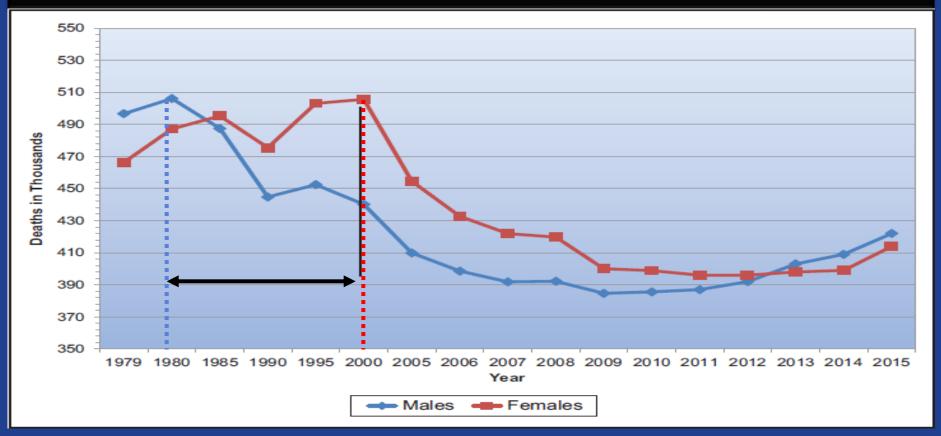
Numbers on bars represent number of persons in category at baseline. *P<0.001, $^{+}P<0.05$ vs persons without diabetes.

Diabetes Care 2005;28:2901-2907

AHA STATISTICAL UPDATE

Heart Disease and Stroke Statistics 2018 Update

Coronary Heart Disease


Population Group	Prevalence, CHD, 2011–2014 Age ≥20 y	Prevalence, MI, 2011–2014 Age ≥20 y
Both sexes	16500000 (6.3%)	7900000 (3.0%)
Males	9100000 (7.4%)	4700000 (3.8%)
Females	7 400 000 (5.3%)	3200000 (2.3%)

Circulation. 2018;137:e67-e492

AHA STATISTICAL UPDATE

Heart Disease and Stroke Statistics 2018 Update

CVD Mortality Trends for Males and Females (United States: 1979–2015)

Circulation. 2018;137:e67-e492

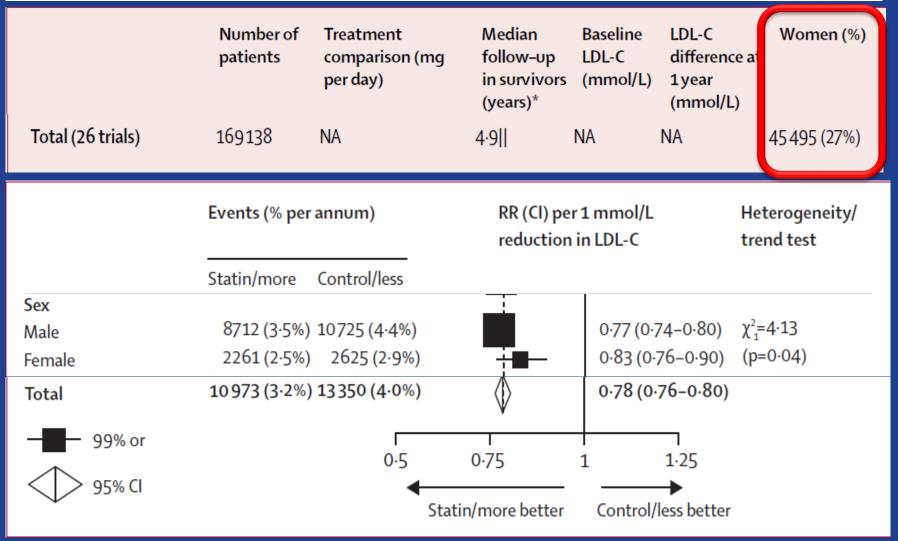
HailOnline

DO STATINS WORK AS WELL FOR WOMEN?

CONTROVERSY surrounds whether women get the same benefit from statins as men. Some researchers claim trials do not give a definitive answer – because most of the subjects were middle-aged men.

Although research shows that death rates appear to drop more markedly in men taking the drugs after surviving a first heart attack or stroke, recurrence rates fell for both genders.

There is no biological reason why statins should not work in both sexes – and five years' use leads to the same heart benefits, studies have shown.


However, younger women have natural protection against heart disease because of the hormone oestrogen, which they lose during the menopause. It means women over 50 are more likely to benefit when their risk rises to match older men.

Researchers from Harvard Medical School re-analysed eight major studies in 2007 and concluded there was no evidence that statins worked as primary prevention for women.

Although some researchers disagree, most accept that women taking statins appear to suffer more side-effects that impact on their quality of life.

Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials

Cholesterol Treatment Trialists' (CTT) Collaboration*

Lancet 2010;376:1670-1681

Meta-Analysis of Statin Effects in Women Versus Men

 18 RCTs of statins with sex-specific outcomes (N=141,235)

- 40,275 women (28.5%), 21,468 CV events.

 CV event rate was lower among those randomized to statin than in those randomized to control (low-dose statin in 4 studies, placebo in 11 studies, usual care in 3 studies) and similar in women and men

 All-cause mortality was also lower with statin both in women and men without significant interaction by sex

Meta-Analysis of Statin Effects in Women Versus Men

Primary Event by Level of Risk in Each Study in Women

Group by		Subgroup within study		Statistics fo	r each study	<u></u>			Odds ratio	and 95%	6 CI		
Risk 3 Way			Odds ratio	Lower limit	Upper limit	p-Value							
HIGH	ALLHAT-LLT	WOMEN	0.94	0.79	1.13	0.5253			-	-	1	1	- 1
HIGH	ATOZ	WOMEN	0.91	0.66	1.24	0.5508			-•	•			
HIGH	AURORA	WOMEN	1.01	0.77	1.32	0.9549				+			
HIGH	CORONA	WOMEN	0.85	0.65	1.10	0.2130				+			
HIGH	HPS	WOMEN	0.78	0.67	0.91	0.0015			-∎-				
HIGH	PROSPER	WOMEN	0.96	0.77	1.19	0.7117				•			
HIGH	SEARCH	WOMEN	0.85	0.68	1.05	0.1284			_ − ∎	+			
HIGH			0.88	0.81	0.95	0.0014				>			
MEDIUM	4S	WOMEN	1.12	0.64	1.97	0.6866					-		
MEDIUM	ASCOT-LLA	WOMEN	1.10	0.57	2.13	0.7745			-		+		
MEDIUM	CARE	WOMEN	0.50	0.33	0.76	0.0009		-	- •				
MEDIUM	GISSI-P	WOMEN	1.07	0.59	1.96	0.8191				-	-		
MEDIUM	JUPITER	WOMEN	0.54	0.37	0.81	0.0025		-					
MEDIUM	LIPID	WOMEN	0.81	0.62	1.07	0.1374			_ − ∎-	ł			
MEDIUM	PROVE-IT	WOMEN	0.69	0.51	0.94	0.0176							
MEDIUM	TNT	WOMEN	0.80	0.66	0.96	0.0192				-			
MEDIUM			0.75	0.64	0.89	0.0011				6			
LOW	AF-TEXCAPS	WOMEN	0.53	0.21	1.34	0.1807			-	+-			
LOW	GREACE	WOMEN	0.42	0.21	0.84	0.0141							
LOW	MEGA	WOMEN	0.74	0.45	1.23	0.2481			+-	+			
LOW			0.59	0.41	0.87	0.0066			$\langle \rangle$				
Overall			0.84	0.79	0.91	0.0000			•				
						0	.1 0.	2	0.5	1	2	5	10

Favors Active

Favors Control

JACC 2012;59:572-82

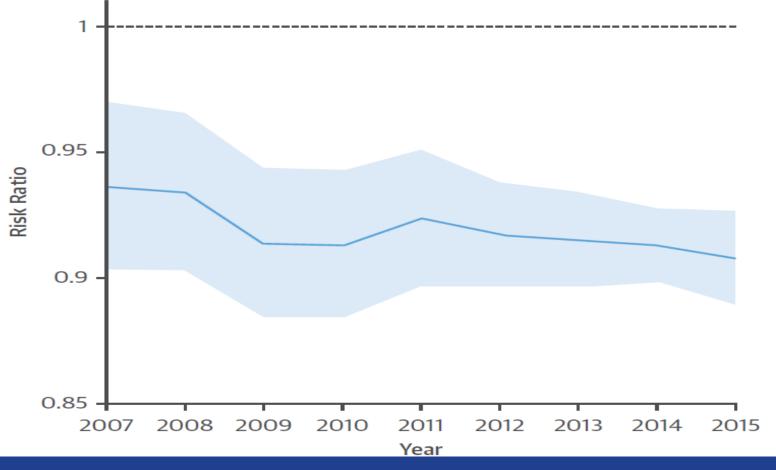
JUPITER: Rosuvastatin for Primary Preventoion with Elevated CRP

Table 1. Baseline Characteristics of the Trial Participants, According to Study Group.*							
Characteristic	Rosuvastatin (N=8901)	Placebo (N=8901)					
Age — yr							
Median	66.0	66.0					
Interquartile range	60.0-71.0	60.0-71.0					
Female sex — no. (%)	3426 (38.5)	3375 (37.9)					

Subgroup	No. of Patients	Hazard Ratio (95% CI)	P Value for Interaction
Sex			0.80
Male	11,001		
Female	6,801	e	
	-	0.25 0.50 1.00 2.00 4.0	0
		Rosuvastatin Placebo Better Better	

N Engl J Med 2008;359:2195-207

Statins for the primary prevention of cardiovascular disease (Review)


Men and women, all appear to benefit.

 These findings counter earlier opinion that the evidence is insufficient to support use of statins in primary prevention for women

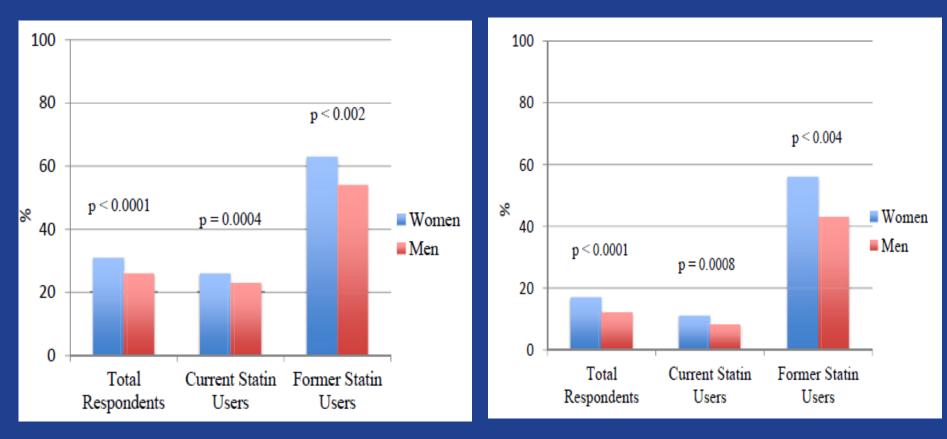
Cochrane Database of Systematic Reviews 2013, Issue 1

Sex Differences in High-Intensity Statin Use Following Myocardial Infarction

FIGURE 2 Risk Ratios (95% Confidence Intervals) for Filling a High-Intensity Statin Prescription Among Women Versus Men Between 2007 and 2015

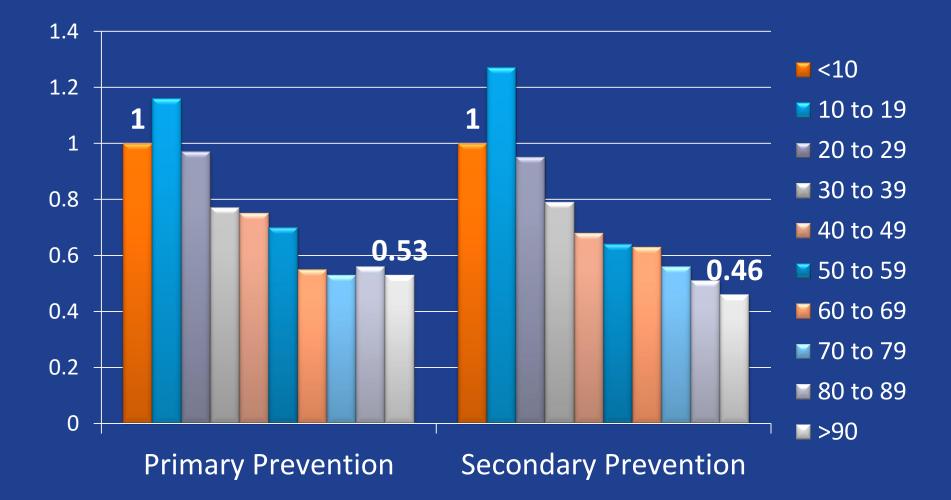
J Am Coll Cardiol 2018;71:1729-37

Likelihood of Receiving Evidence-Based Treatment After Acute MI by Sex

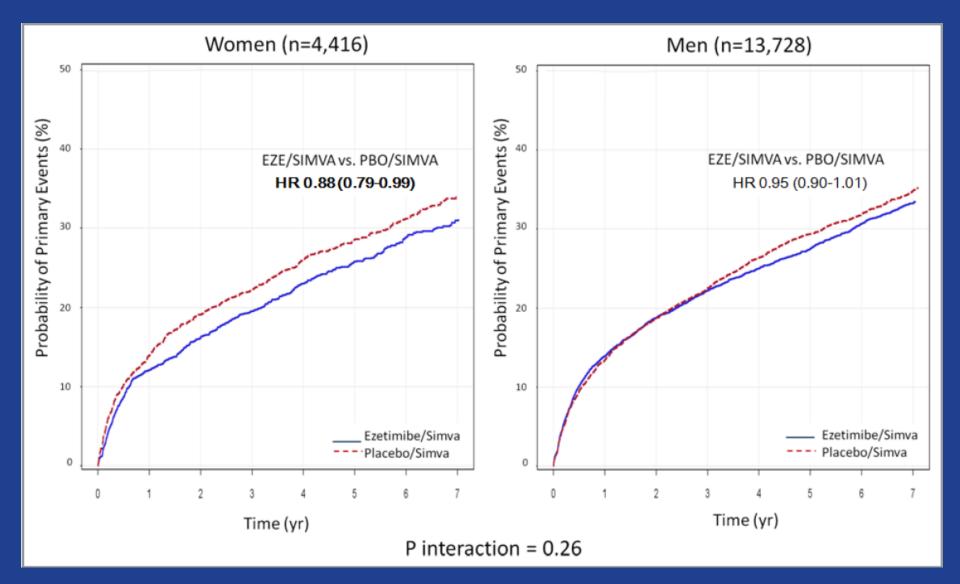

	OR	OR 95% CI P value	n
Reperfusion treatment	HHH	0.84 (0.79 to 0.89, P<0.001)	48 112
Beta blocker at discharge		0.91 (0.86 to 0.96, P<0.001)	48 109
ACEI/ARB at discharge	⊢∎⊣	0.85 (0.82 to 0.89, P<0.001)	48 109
Aspirin	H.	0.95 (0.90 to 1.00, P=0.075)	48 109
Statins at discharge	⊢∎⊣	0.81 (0.77 to 0.86, P<0.001)	48 109
Other antiplatelet	H B -1	0.82 (0.77 to 0.86, P<0.001)	24 602
Nitrates	F		48 109
0.5	Favors men 🔊	Favors women	

Circ Cardiovasc Qual Outcomes. 2018;11:e004437

Gender Differences in Side Effects and Attitudes Regarding Statin Use In The USAGE Study

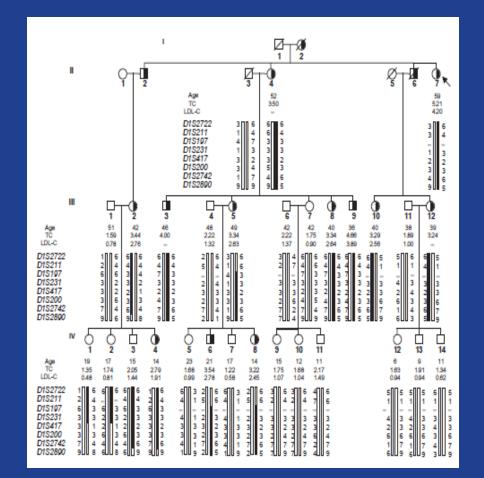

New and/or worsening muscle symptoms while taking a statin.

Stopped a statin due to muscle symptoms

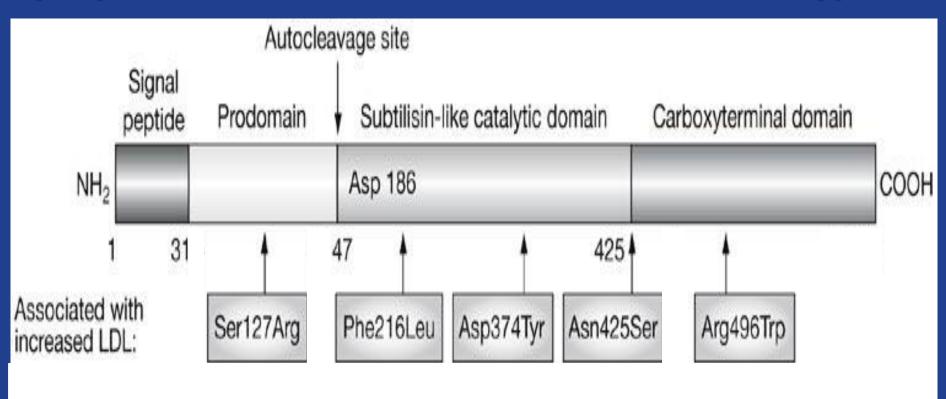

J Clin Lipidol 2016;10:833-841

Statin Proportion of Days Covered and All-Cause Mortality in Israel

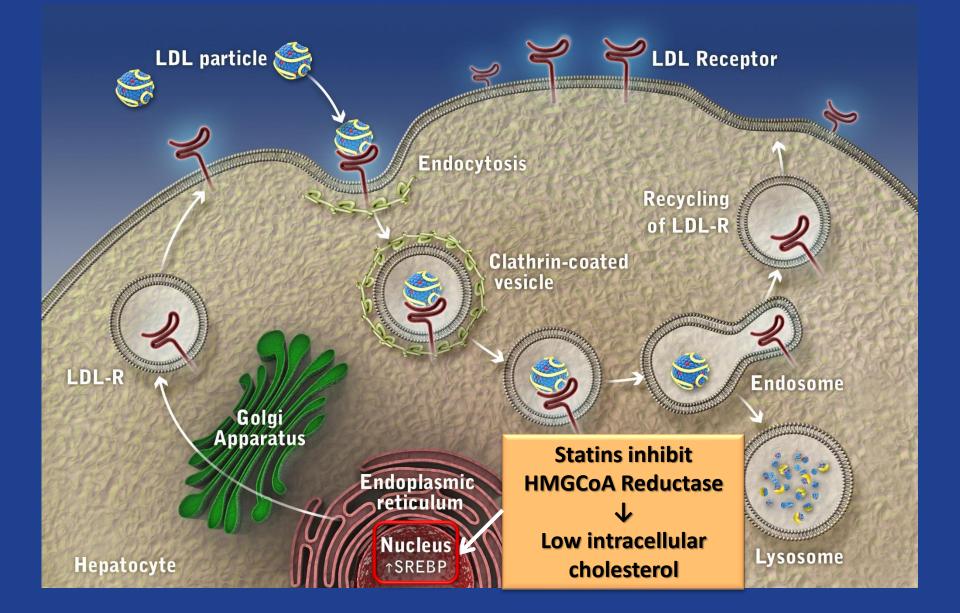
Arch Intern Med. 2009;169:260-268


IMPROVE-IT: Ezetimibe Added to Statin after ACS

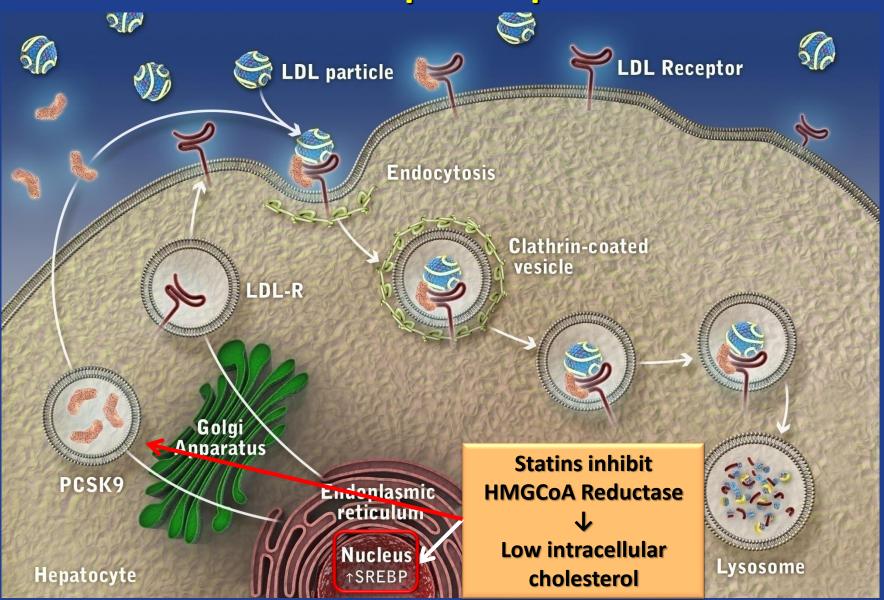
N Engl J Med 2015;372:2387-97


A New Gene Mutated in a Family with FH Phenotype

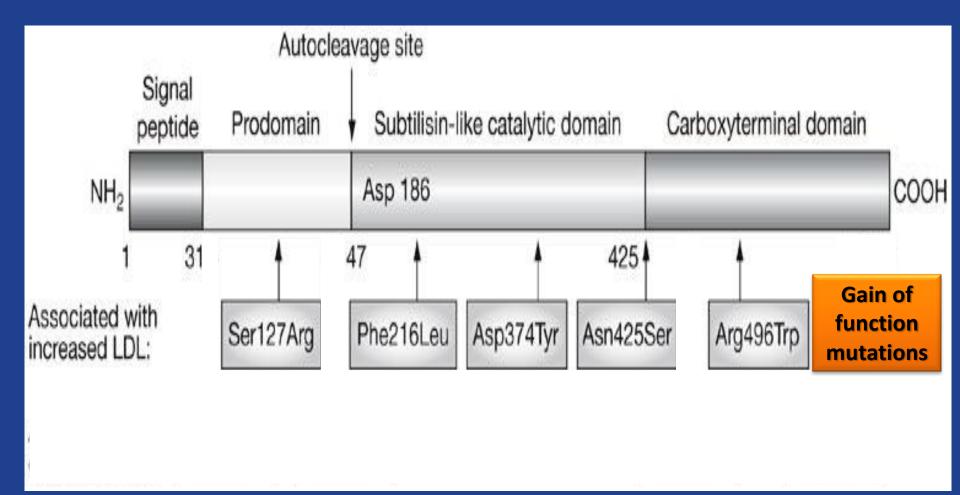
- Tendon xanthomas
- Early MI and stroke
- LDL-C > 250 mg/dL
- Autosomal dominant
- No mutations in LDL-R or ApoB genes


PCSK9 Gene

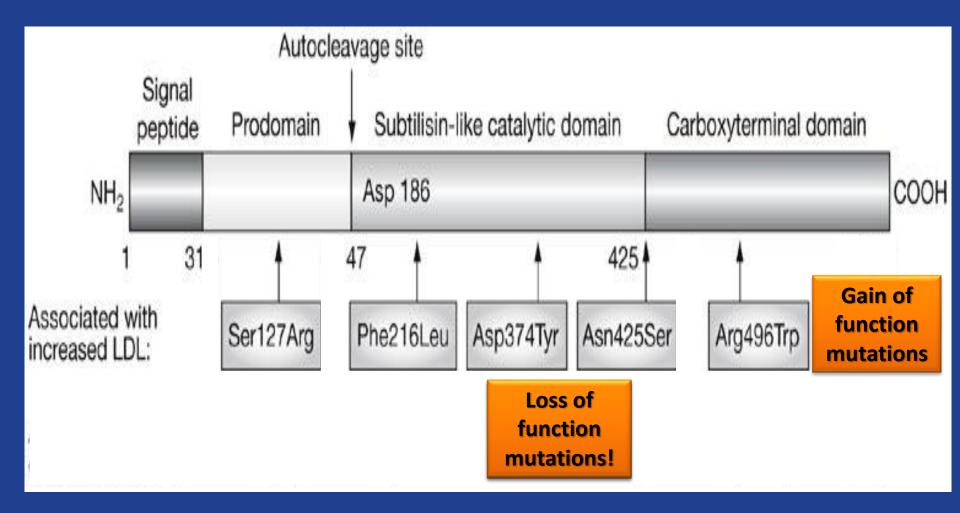
proprotein convertase subtilisin-like/kexin type 9



Nat Clin Pract Cardiovasc Med 2007;4: 214–225


LDL Receptor Function and Life Cycle

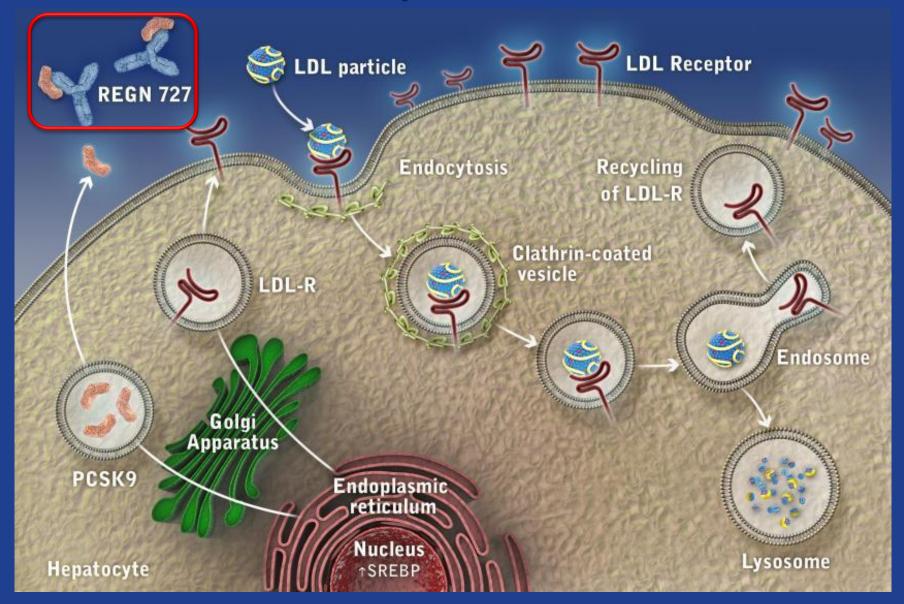
The Role of PCSK9 in the Regulation of LDL Receptor Expression



PCSK9 Gene

Nat Clin Pract Cardiovasc Med 2007;4: 214–225

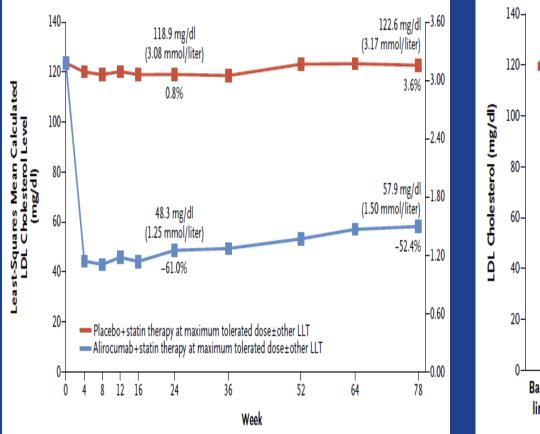
PCSK9 Gene

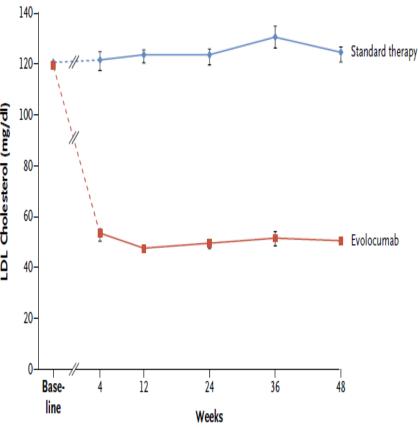

Nat Clin Pract Cardiovasc Med 2007;4: 214–225

Population Studies of PCSK9 Loss of Function Mutations

		PCSK9 Mutation	LDL-C Reduction	CHD Reduction	Population
Patients with loss-of-function mutations in <i>PCSK9</i> or total lack of PCSK9					Copenhagen City Heart Study
 Have naturally low levels of LDL-C and reduced coronary heart disease (→ efficacy) 	Benn M, et al ¹	R46L	12%	46%	Copenhagen General Population Study
 Are not associated with other detectable abnormalities (→ safety) 					Copenhagen Ischemic Heart Disease Study
	Cohen JC, et al ²	R46L Y142X or C679X	15% 28%	47% 88%	Atherosclerosis Risk in Community Study (US)

¹JACC 2010;55:2833-42 ²NEJM 2006;354:1264-72


Impact of an PCSK9 mAb on LDL Receptor Expression



Long Term Studies With PCSK9 Inhibitors

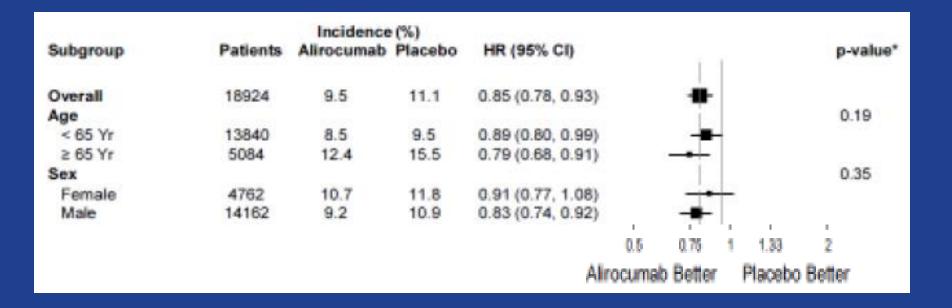
Alirocumab: ODYSSEY Long term

Evolocumab: OSLER

N Engl J Med 2015;372:1489-99

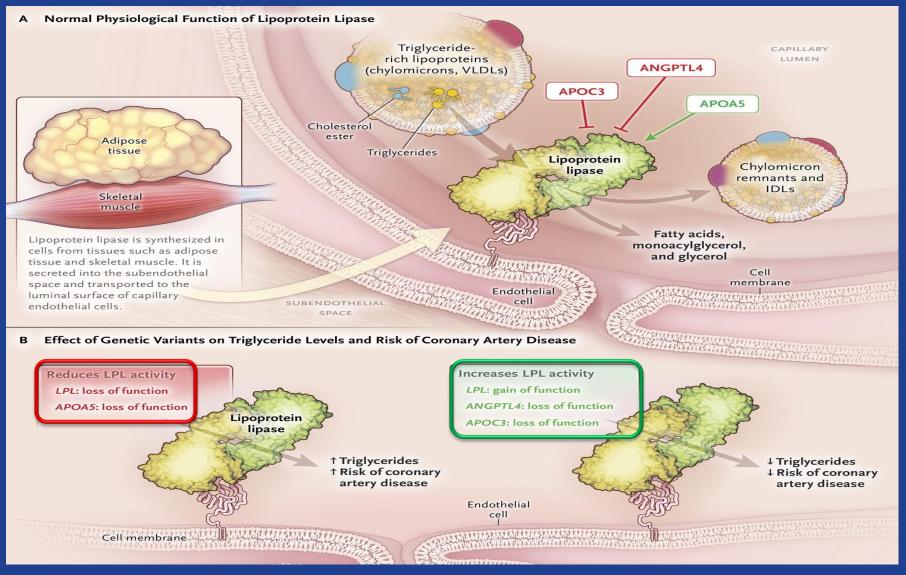
N Engl J Med 2015;372:1500-9

FOURIER: Evolocumab in Patients with CVD


Table 1. Characteristics of the Patients at Baseline.*

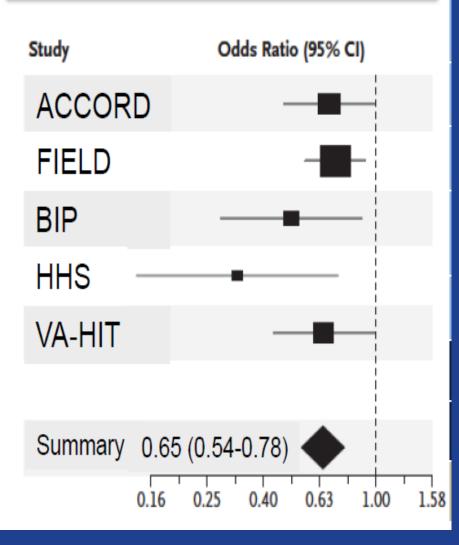
Characteristics				Evolocumab (N=13,784)	Placebo (N = 13,780)
Age — yr				62.5±9.1	62.5±8.9
Male sex — no. (%)				10,397 (75.4)	10,398 (75.5)
Subgroup	Patients	Evo Mab	Pbo	(95% CI)	Pinteraction
OVERALL	27564	12.6	14.6		0.85 (0.79-0.92)
Age					0.90
<65	15310	12.6	14.6		0.86 (0.78-0.94)
≥65	12254	12.6	14.6		0.85 (0.76-0.95)
Sex					0.48
Female	6769	9.9	12.5	-8-	0.81 (0.69-0.95)
Male	20795	13.5	15.3		0.86 (0.80-0.94)
			+	1	
			0.4	1.0	2.5
			Evolocumab	better Placel	bo better

N Engl J Med 2017;376:1713-1722


ODYSSEY OTCOMES: Alirocumab in Post-ACS

Characteristic	Alirocumab (N=9462)	Placebo (N=9462)
Age, years, median (Q1–Q3)	58 (52–65)	58 (52–65)
Female, n (%)	2390 (25.3)	2372 (25.1)

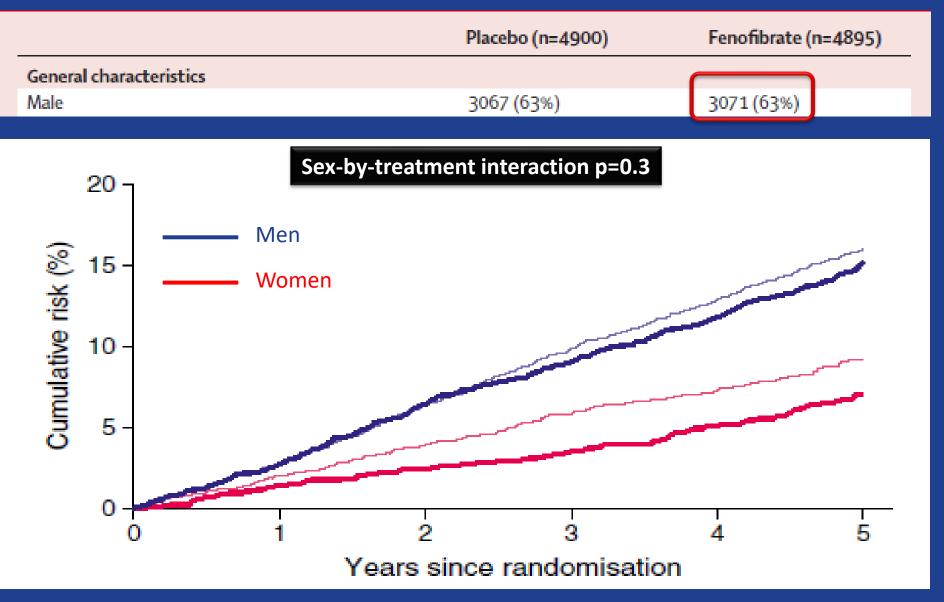
American College of Cardiology 67th Scientific Sessions March 10, 2018


Mutations in Four LPL Pathway Genes Affect Plasma TG and CVD Risk

N Engl J Med 2016.374;1134-1144

CVD Prevention Trials with TG Lowering Agents

Subgroup with High TG, Low HDL



ACCORD: Fibreates for Women - Good or Bad?

Table 1. Baseline Characteristics of the Patients.*

Characteristic		All Patients (N=5518)	Fenofibrate (N = 2765)	Placebo (N = 2753)	P Value
Age — yr		62.3±6.8	62.2±6.7	62.3±6.9	0.69
Female sex — no. (%)		1694 (30.7)	851 (30.8)	843 (30.6)	0.90
Subgroup	Fenofibrate % of events (Placebo ino. in group)	Hazard Ratio (95)	% CI)	P Value for Interaction
Overall	10.52 (2765)	11.26 (2753)			
Sex					0.01
Female	9.05 (851)	6.64 (843)			
Male	11.18 (1914)	13.30 (1910)			
	()	0	1 	2	
		Fe	enofibrate Better	Placebo Better	

FIELD: Fenofibrate in 9795 people with type 2 DM

Lancet 2005;366:1849-61, Diabetologia 2014;57:2296-2303

Pemafibrate to Reduce Cardiovascular OutcoMes by Reducing Triglycerides IN Diabetic PatiENTs

- Female Enrollment Target: 20-30%
- 200 events in women before study may be terminated

AHA/ACOG PRESIDENTIAL ADVISORY

Promoting Risk Identification and Reduction of Cardiovascular Disease in Women Through Collaboration With Obstetricians and Gynecologists

A Presidential Advisory From the American Heart Association and the American College of Obstetricians and Gynecologists

An optimal well-woman OB/GYN visit should include a thorough family history, screening for and targeted review of CV risk factors (including those unique to women), and lifestyle counseling to improve CV risk factors with the goal of preventing future CV events.

