# Cardiotoxicity of molecular targeting agents

#### Hovav Nechushtan

Hadassah Ein Kerem

#### Cardiac toxicity



- Markers and imaging to identify early cardiac dysfunction are outside the scope of this lecture
- Interesting to note that most recently proBNP a protein elevated in cardiac dysfunction has been claimed to be an earlymarker for efficiency of sunitinib in RCC

## Outline

Molecular targeting agents

- More specific, less toxicity
- Unexpected toxicity
- ErbB2
  - Herceptin, Lapatinib
- KIT
  - Imatinib, dasatinib, nilotinib
- Multitarget vegf inhibition
  - Sorafenib, Sunitinib

#### Tyrosine kinase inhibitors

- Currently around 80% of cancer developmental funds to these kind of drugs
- 20% of total drug development in medicine!!
- (cir research 6-2010)



#### Cheng and Force Cardiotoxicity of Cancer Therapeutics 25

| able 2. | Kinase T | argets in | Cancer | and 1 | Their | Roles in | the | Cardiovascular | System |  |
|---------|----------|-----------|--------|-------|-------|----------|-----|----------------|--------|--|
|---------|----------|-----------|--------|-------|-------|----------|-----|----------------|--------|--|

| inase                  | Inhibitors                                                       | Role of Kinase in the Heart/Vasculature/Models Used                                                                                                                                                                                                                |
|------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bl                     | Imatinib/D/N bosutinib, etc <sup>9</sup>                         | Inhibition of Abl by imatinib induced ER stress and cell<br>death in cardiomyocytes <sup>19,22</sup>                                                                                                                                                               |
| rowth factor receptors |                                                                  |                                                                                                                                                                                                                                                                    |
| EGFR (ERBB1)           | Gefitinib, erlotinib, Iapatinib, XL647, BIBW-2992 <sup>7</sup>   | Inhibition of EGFR by erlotinib led to reduced LV<br>function under conditions of chronic catecholamine<br>stimulation <sup>71</sup>                                                                                                                               |
| HER2 (ERBB2)           | Lapatinib, XL647, BIBW-2992 <sup>7</sup>                         | Conditional deletion of ERBB2 led to DCM <sup>72</sup>                                                                                                                                                                                                             |
| c-Kit                  | Imatinib/D/N sunitinib, sorafenib vatalanib                      | c-Kit deficiency blocked: (1) homing of CSC to sites of<br>post-MI injury <sup>67</sup> ; 2) CSC differentiation <sup>65</sup> ; and (3)<br>cardiomyocyte terminal differentiation. <sup>68</sup> Imatinib<br>reduced stenosis after arterial injury <sup>65</sup> |
| VEGFRs                 | Sunitinib, sorafenib pazopanib, vandetanib, cediranib, vatalanib | VEGF trap <sup>31</sup> or inhibition <sup>32</sup> caused cardiac dysfunction<br>after PO                                                                                                                                                                         |
| PDGFRs                 | Imatinib/D/N sunitinib, sorafenib pazopanib, vatalanib           | Intramyocardial delivery of PDGF improved post-MI<br>ventricular function <sup>73</sup> ; deletion of PDGFRβ led to LV<br>dysfunction after PO <sup>64</sup>                                                                                                       |
| I3K pathway            |                                                                  |                                                                                                                                                                                                                                                                    |
| $PI3K(p110\alpha)$     | SF-1126, XL765 <sup>34</sup>                                     | Mediates physiological heart growth and provides<br>protection from pathological stress <sup>36</sup>                                                                                                                                                              |
| PI3K(p110γ)            | SF-1126, XL765                                                   | Regulates contractility and pathological hypertrophy74,75                                                                                                                                                                                                          |
| Akt                    | VQD-002, perifosine                                              | Regulates cardiomyocyte growth, proliferation, survival<br>and metabolism <sup>76–78</sup> ; promotes CSC proliferation and<br>expansion <sup>79</sup> ; inhibits cardiac sarcolemmal Na(+)/H(+)<br>exchanger aclivily <sup>80</sup>                               |
| PDK1                   | UCN-01                                                           | A dual effector for cardiac cell survival and<br>beta-adrenergic response <sup>39</sup>                                                                                                                                                                            |

| Ras/Rat/MEK/ERK pathway |                                                  |                                                                                                                                                                                  |
|-------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Raf-1/B-Raf             | Sorafenib RAF-265                                | Conditional deletion/DN led to LV dilatation and HF after<br>P0 <sup>62,63</sup> ; specific gain-of-function mutations cause an<br>HCM phenocopy <sup>61</sup>                   |
| MEK1/2                  | PD-0325901, AZD-6244, ARRY-162                   | Regulation of cardiac hypertrophy and cell survival <sup>81</sup>                                                                                                                |
| Cell cycle regulation   |                                                  |                                                                                                                                                                                  |
| CDK                     | Alvocidib, BI252645                              | Cardiomyocyte cell cycle control in normal development                                                                                                                           |
| Aurora kinases          | AZD-1152                                         | and in response to injury <sup>44,82</sup>                                                                                                                                       |
| PLKs                    | BI2526                                           |                                                                                                                                                                                  |
| Dthers                  |                                                  |                                                                                                                                                                                  |
| mTOR                    | Temsirolimus, everolimus, sirolimus, deforolimus | Central regulator of cardiac cell growth/hypertrophy <sup>41,42</sup> ;<br>integrates energy/metabolic status                                                                    |
| JAK2                    | Lestaurtinib, CP-690550, TG101348                | JAK2-STAT3 generally protective, especially in I/R<br>injury, hypertrophy, and postpartum cardiomyopathy <sup>56,57</sup>                                                        |
| p38                     | GW856553                                         | p38 inhibition attenuated biomarkers of<br>atherosclerosis <sup>49</sup> ; reduced inflammatory burden in<br>subjects already on statin therapy and undergoing PCI <sup>50</sup> |

\_\_\_\_ . . . .

. . . . .

. .

...

#### Anti Her2 therapies

- Herceptin in breast cancer patients
- A critical point is the relationship with prior anthracycline treatments



|                        | C/T + H           | C/T alone | AC+H     | AC   | T+H      | Т    |
|------------------------|-------------------|-----------|----------|------|----------|------|
| RR                     | 50%               | 32%       | 56%      | 42%  | 31%      | 14%  |
| TTP                    | 7.4               | 4.6       | 7.8      | 6.1  | 6.9      | 3.0  |
| OS                     | 25.1              | 20.3      | 26.8     | 21.4 | 22.1     | 18.4 |
| Cardiac<br>dysfunction | Total 63 patients |           | 27%<br>1 | 8%   | 13%<br>1 | 1%   |
|                        |                   |           |          |      |          |      |



Journal of Clinical Oncology 2002; 20: 1215-1221







Breast Cancer Research and Treatment 2005; 94(supp1): S5



New England Journal of Medicine 2006; 354:809-20



| Table 1. Summary of cardiac safety with trastuzumab in early breast cancer [8, 10, 11, 13, 14] |          |                   |  |                    |                   |  |  |  |
|------------------------------------------------------------------------------------------------|----------|-------------------|--|--------------------|-------------------|--|--|--|
| Trial                                                                                          | Arm      | Baseline LVEF (%) |  | CHF(%)             | Cardiac death (n) |  |  |  |
| HERA                                                                                           | Nil      | ≥55               |  | 0                  | 1                 |  |  |  |
|                                                                                                | H 1 year | -                 |  | 0.6                | 0                 |  |  |  |
| NSABPB-31                                                                                      | AC→P     | ≥50               |  | 0.8 <sup>cum</sup> | 1                 |  |  |  |
|                                                                                                | AC→PH    | -                 |  | 4.1 <sup>cum</sup> | 0                 |  |  |  |
| NCCTG N9831                                                                                    | AC→P     | ≥50               |  | 0.3 <sup>cum</sup> | 1                 |  |  |  |
|                                                                                                | AC→P→H   | -                 |  | 2.5 <sup>cum</sup> | 1                 |  |  |  |
|                                                                                                | AC→PH    | -                 |  | 3.5 <sup>cum</sup> | 0                 |  |  |  |
| BCIRG 006                                                                                      | AC→D     | ≥50               |  | 0.3                | 0                 |  |  |  |
|                                                                                                | AC→DH    | -                 |  | 1.6                | 0                 |  |  |  |
|                                                                                                | DCarboH  | -                 |  | 0.4                | 0                 |  |  |  |
| FinHer                                                                                         | No H     |                   |  | 3                  | 0                 |  |  |  |
|                                                                                                | Н        | -                 |  | 0                  | 0                 |  |  |  |

Concurrent > sequential > TCH > FinHer

#### Herceptin cardiotoxicity

Distinct from antracycline

- Reversibility
- Morphology



Journal Clinical Oncology 2005; 23: 7820-26

## Rat, cardiomyocyte

Control

Idarubicin treated

Idarubicin treated



#### Herceptin treated, human myocyte



**Fig 4.** Typical biopsy ( $\times$ 4,000) from a patient with left ventricular dysfunction on trastuzumab alone. Representative biopsy specimen from a patient with trastuzumab-related cardiotoxicity demonstrating no ultrastructural changes.

#### Role of Her2 in heart

#### Animal studies

- Knock out Her2, observe heart change
- Define downstream molecules

#### In mice

 Germline deletion of ErbB2, ErbB4, NRG1 is lethal in mid-gestation

• Nature 1995; 378: 386-90, 90-94, 94-98

#### Mice study

#### Cardiac-specific ErbB2 deletion is viable, but develop DCM and pressure overload

|                      | Table 1 Echocardiographic analysis of in vivo cardiac size and function in Erbb2-CKO mice |               |               |               |                 |                      |                           |             |            |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------|---------------|---------------|---------------|-----------------|----------------------|---------------------------|-------------|------------|--|--|--|
|                      | LVEDD<br>(mm)                                                                             | LVESD<br>(mm) | FS<br>(%)     | SEPth<br>(mm) | PWth<br>(mm)    | Mean Vcf<br>(circ/s) | Heart rate<br>(beats/min) | BW<br>(g)   | Age<br>(d) |  |  |  |
| Erbb2-WT<br>(n = 6)  | 3.73±0.12                                                                                 | 2.33±0.10     | 37.9 ± 2.65   | 1.05 ± 0.03   | $1.09 \pm 0.04$ | $6.64 \pm 0.70$      | 378 ± 29                  | 30.1 ± 2.86 | 90 ± 1     |  |  |  |
| Erbb2-CKO<br>(n = 8) | 4.60 ± 0.20                                                                               | 3.72±0.22     | 19.4 ± 1.630. | 94±0.01       | $0.95 \pm 0.03$ | $3.95 \pm 0.03$      | 378 ± 19                  | 28.2±1.20   | 90 ± 1     |  |  |  |
| P value              | 0.006                                                                                     | 0.0005        | < 0.0001      | 0.005         | 0.01            | 0.006                | 1                         | 0.5         | 1          |  |  |  |

FS, percent fractional shortening calculated as ((LVEDD – LVESD) / LVEDD) × 100; SEPth, septal wall thickness; PWth, posterior wall thickness; mean Vcf, mean velocity of circumferential fiber shortening; BW, body weight. All values ± s.e.m.

Nature medicine 2002; 8: 459-465



Journal of molecular and cellular cardiology 2006; 41: 228-35



## Lapatinib, phase I

- Reversible EGFR and Her2 TKI
- 67 pts, heavily pretreated solid tumors
  - EGFR+, Her2+
  - 500-1600mg/d, phase I study
- Diarrhea (42%), rash (31%) common
- No cardiac dysfunction
- Well-tolerated

## Lapatinib, phase III

- Randomized phase III, 324 MBC
  - Progress under Antra, Taxane, Herceptin
  - Her2+
  - Lapatinib + Capecitabine vs. Capecitabine
    - 1250mg/d, 2000mg/m2/d x 14d/21d, 2500mg/m2/d x 14d/21d
  - Time to progression: 8.4m vs. 4.4m, HR:0.49, p<0.001</li>

New England Journal of Medicine 2006; 355: 2733-43.

## Lapatinib, phase III

#### Cardiac safety

- Prospective monitor of LVEF
- 4 pts (2.4%) asymptomatic LVEF decreasing
  - Far more less than Herceptin (?)
  - Other mechanisms than Her2 (?)
  - Cardioprotection through AMPK activation?
- By retrospective study,
  - Herceptin alone : 3-7%

## Herceptin + Capecitabine

- 27 pts, MBC, Her2+, phase II
  - Exposed to Anthracycline and Taxane
    - Adjuvant, neoadjuvant, palliative
- Herceptin + Xeloda
- CR/PR/SD: 15/30/33%, RR: 45%
- Hand-foot syndrome most common
- No reported cardiotoxicity



Nature Review Cancer 2007; 7: 332-344

## ABL kinase inhibitor

- Imatinib, nilotinib
  - Bind to inactive conformation of ABL domain
  - Nilotinib 20 times potent than imatinib
- Dasatinib
  - Bind to both active and inactive of ABL
- They also block
  - ARG (ABL-related gene), PDGFRα/β, KIT

#### Imatinib

#### Randomized phase III (IRIS)

- Imatinib vs. interferon-α+ low-dose AraC
  - Cross-over allowed
- 1106 pts, fresh CML
- Major cytogenic response: 85.2% vs. 22.1%
- CHF: 1%, no difference between arms

New England Journal of Medicine 2003; 348: 994-1004 Nature Review Cancer 2007; 7: 332-344

| failure                       |     |     |     |     |     |     |     |     |     |     |                |
|-------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------|
| Patient                       | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | Summary        |
| Age                           | 72  | 76  | 61  | 59  | 45  | 69  | 75  | 75  | 62  | 49  | 64.3 ± 11.0    |
| Sex                           | М   | М   | F   | F   | М   | М   | М   | М   | F   | F   | N/A            |
| Diagnosis                     | CML | CML | MF  | CML | CML | CML | ALL | CML | CML | CML | N/A            |
| Imatinib dose<br>(mg/day)     | 600 | 800 | 800 | 400 | 600 | 800 | 400 | 400 | 600 | 800 | $620 \pm 166$  |
| Drug to diagnosis<br>(months) | 14  | 14  | 1   | 9   | 1   | 1   | 1.5 | 14  | 8   | 8   | $7.15 \pm 5.4$ |
| Prior CAD                     | Υ   | Ν   | Ν   | Ν   | Ν   | BG  | Ν   | BG  | Ν   | Ν   | 3/10           |
| Stress test                   | Neg | Ang | Neg | Neg | N/A            |
| Catheterization               | PS  | NL  | NL  | ND  | NL  | PG  | ND  | PS  | NL  | NL  | N/A            |
| Diabetes                      | Ν   | Y   | Ν   | Ν   | Ν   | Ν   | Y   | Y   | Ν   | Y   | 4/10           |
| Hypertension                  | Y   | Y   | Ν   | Y   | Ν   | Y   | Y   | Y   | Ν   | Y   | 7/10           |
| NYHA (pre-Rx)                 | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1              |
| NYHA (post-Rx)                | 3   | 3   | 4   | 3   | 4   | 4   | 3   | 4   | 3   | 4   | 3.5 ± 0.53*    |
| EF (pre-Rx)                   | 55  | 60  | 65  | 50  | 70  | 49  | 55  | 48  | 55  | 55  | $56 \pm 7.0$   |
| EF (post-Rx)                  | 40  | 24  | 31  | 23  | 15  | 30  | 31  | 16  | 20  | 18  | $25 \pm 8.0*$  |
|                               |     |     |     |     |     |     |     |     |     |     |                |

Supplementary Table 1. Clinical characteristics of patients with imatinib-associated heart failure

#### Nature medicine 2006; 12: 908-16

M, male; F, female; N/A not applicable; CML, chronic myelogenous leukemia; MF, myelofibrosis; ALL, acute lymphoblastic leukemia; CAD, coronary artery disease; BG, coronary artery bypass graft; Neg, negative for ischemia; Ang, angina; PS, patent stent; NL, normal catheterization; ND, not done; PG, patent graft; NYHA, New York Heart Association functional class; EF, ejection fraction. Data are mean  $\pm$  SD. \**P* < 0.001 versus pre-imatinib.

#### Human, heart biopsy

#### sarcoplasmic reticulum with membrane whorls



dense membrane whorl

effaced myofilaments and glycogen accumulation

Nature medicine 2006; 12: 908-16

## Retrospective study

- Italian Cooperative Study Group on CML (ICSG on CML)
  - Four consecutive studies
- 833 pts, 296 Late Chronic Phase, 537 ECP
  - Median observation 64m
- 77 death, 68 LCP, 9 ECP
  - 3 cardiac death(0.3%), MI, 59/78/84 year-old
  - No previous LV dysfunction
- Cardiotoxicity, really ?

## Retrospective study

- M. D. Anderson Cancer Center,
  - from 1998-7 to 2006-7. 1276 patients enrolled
- The median time from imatinib therapy: 162 days
- 22 (1.8%) systolic heart failure
- 8 (0.6%) were considered possibly related to imatinib
- 11/22 patients continued imatinib
  - Dose adjustments and management for the CHF symptoms
  - No further complications.

#### Imatinib and ER stress

- Rat cardiomyocte study
- ER (endoplasmic reticulum) stress
  - Detail linkage of ABL and ER stress not clear
  - Initiated by unfold protein in ER
  - Activate distinct pathways
    - PPR-like ER kinase (PERK)
    - IRE1
    - Protein kinase Cδ

Nature medicine 2006; 12: 908-916

## Imatinib and ER stress

#### ER stress

- Release cytochrome  $c \rightarrow$  apoptosis
- Mitochondria dysfunction, loss membrane potential
  - Impaired energy generation, decrease ATP
- Expression of imatinib-resistant mutant, ABL T315I,
  - partially rescued cells from imatinib toxicity



Nature Review Cancer 2007; 7: 332-344

#### Nilotinib

More potent binding to ABL than Imatinib
 20-50 times

- Phase I study, 119 pts
  - Imatinib-resistant CML, or Ph+ ALL
  - 50-1200mg/d
- Efficacy
  - Blast crisis: 13/33 hematological response
  - Accelerated: 33/46 hematological response
  - Chronic phase: 11/12 hematological response

## Nilotinib

- Adverse effect
  - Myelosuppression
  - Transient indirect hyperbilirubinemia
  - Rash
- Cardiac
  - QTc prolongation, incidence?
  - Only 1 pt had two events,
    - Pericardial effusion and Af

#### Dasatinib

#### Inhibit

- active and inactive ABL
- SRC
- Phase I, 84 pts
  - CML(chronic/accelerate/blast), Ph+ ALL
- Efficacy and AE
  - CML chronic: 37/40 hematological response
  - Others: 31/44 hematological response
  - No reported cardiotoxicity

New England Journal of Medicine 2006; 354: 2531-41

#### Dasatinib, pharmaceutical information

|                                     | All Patients<br>(n=911) |               | Chronic<br>Il Patients Phase<br>(n=911) (n=488) |                  | Myeloid<br>Blast<br>Phase<br>(n=132) | Lymphoid<br>Blast Phase<br>and<br>Ph+ ALL<br>(n=105) |  |
|-------------------------------------|-------------------------|---------------|-------------------------------------------------|------------------|--------------------------------------|------------------------------------------------------|--|
|                                     | All<br>Grades           | Grades<br>3/4 | Grades<br>3/4                                   | Grades<br>3/4    | Grades<br>3/4                        | Grades<br>3/4                                        |  |
| Preferred Term                      | Gradeo                  | 0/1           | Per                                             | cent (%) of Pati | ents                                 | 0/1                                                  |  |
| Fluid Retention                     | 50                      | 9             | 6                                               | 6                | 23                                   | 9                                                    |  |
| Superficial Edema                   | 36                      | 1             | 0                                               | 2                | 3                                    | 2                                                    |  |
| Pleural Effusion                    | 22                      | 5             | 3                                               | 3                | 14                                   | 8                                                    |  |
| Other Fluid Retention               | 14                      | 5             | 4                                               | 4                | 12                                   | 3                                                    |  |
| Generalized Edema                   | a 5                     | 1             | <1                                              | 0                | 2                                    | 1                                                    |  |
| Congestive Heart<br>Failure/Cardiac |                         | 0             | 0                                               | 1                | F                                    | 1                                                    |  |
| Dysiuncuon <sup>a</sup>             | 4                       | 2             | 3                                               | 1                | 5                                    | 1                                                    |  |
| Pericardial Effusion                | 14                      | 1             | <1                                              | 1                | 3                                    | 0                                                    |  |
| Pulmonary Edema                     | 4                       | 1             | 1                                               | 2                | 0                                    | 1                                                    |  |
| Ascites<br>Pulmonary                | 1                       | 1             | U                                               | 1                | 2                                    | 2                                                    |  |
| Hypertension                        | 1                       | 0             | <1                                              | 1                | 2                                    | 0                                                    |  |

#### ABL kinase inhibitor

• Really cardiotoxic ?

• Even existed, very low, <1%

More observation, carefully

#### Multi-target inhibitor

#### Sorafenib

• RAF1, BRAF, VEGFR2,3, PDGFR, KIT, and FLT3

#### Sunitinib

• VEGFR1-3, PDGFR $\alpha/\beta$ , KIT, FLT3, CSF1R, RET

#### • Dirty drug

• Off-target effect

## Sunitinib for GIST

- Randomized phase III double blind
  - 312 pts with GIST, progress under Imatinib
- Sunitinib versus Placebo, 2:1
  - 50mg/d, 4-wk-on, 2-wk-off, 6-wk/cycle
- Efficacy and AE
  - TTP: 27.3 vs. 6.4 wks, HR: 0.33, p<0.001</p>
  - PR/SD/PD: 7/58/19%, 0/48/37%
  - Fatigue, diarrhea, skin discoloration, nausea
  - No decline in LVEF (prospectively)
  - 4% hypothyroidism

#### http://www.pfizer.com/pfizer/download/uspi\_sutent.pdf

| Table 2. Laboratory Abnormalities Reported in Study A in at Least 10% of GIST Patients Who Received SUTENT or Placebo* |             |                         |             |             |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------|-------------|-------------|--|--|--|--|--|
|                                                                                                                        | GIST        |                         |             |             |  |  |  |  |  |
| Laboratory                                                                                                             | SUTENT      | Г (n=202)               | Placebo     | (n=102)     |  |  |  |  |  |
| Parameter, n (%)                                                                                                       | All Grades* | Grade 3/4* <sup>a</sup> | All Grades* | Grade 3/4*1 |  |  |  |  |  |
| Any                                                                                                                    |             | 68 (34)                 |             | 22 (22)     |  |  |  |  |  |
| Gastrointestinal                                                                                                       |             |                         |             |             |  |  |  |  |  |
| AST / ALT                                                                                                              | 78 (39)     | 3 (2)                   | 23 (23)     | 1 (1)       |  |  |  |  |  |
| Lipase                                                                                                                 | 50 (25)     | 20 (10)                 | 17 (17)     | 7 (7)       |  |  |  |  |  |
| Alkaline phosphatase                                                                                                   | 48 (24)     | 7 (4)                   | 21 (21)     | 4 (4)       |  |  |  |  |  |
| Amylase                                                                                                                | 35 (17)     | 10 (5)                  | 12 (12)     | 3 (3)       |  |  |  |  |  |
| Total bilirubin                                                                                                        | 32 (16)     | 2 (1)                   | 8 (8)       | 0 (0)       |  |  |  |  |  |
| Indirect bilirubin                                                                                                     | 20 (10)     | 0 (0)                   | 4 (4)       | 0 (0)       |  |  |  |  |  |
| Cardiac                                                                                                                |             |                         |             |             |  |  |  |  |  |
| Decreased LVEF                                                                                                         | 22 (11)     | 2 (1)                   | 3 (3)       | 0 (0)       |  |  |  |  |  |
| Renal/Metabolic                                                                                                        |             |                         |             |             |  |  |  |  |  |
| Creatinine                                                                                                             | 25 (12)     | 1 (1)                   | 7 (7)       | 0 (0)       |  |  |  |  |  |
| Potassium decreased                                                                                                    | 24 (12)     | 1 (1)                   | 4 (4)       | 0 (0)       |  |  |  |  |  |
| Sodium increased                                                                                                       | 20 (10)     | 0 (0)                   | 4 (4)       | 1 (1)       |  |  |  |  |  |
| Hematology                                                                                                             |             |                         |             |             |  |  |  |  |  |
| Neutrophils                                                                                                            | 107 (53)    | 20 (10)                 | 4 (4)       | 0 (0)       |  |  |  |  |  |
| Lymphocytes                                                                                                            | 76 (38)     | 0 (0)                   | 16 (16)     | 0 (0)       |  |  |  |  |  |
| Platelets                                                                                                              | 76 (38)     | 10 (5)                  | 4 (4)       | 0 (0)       |  |  |  |  |  |
| Hemoglobin                                                                                                             | 52 (26)     | 6 (3)                   | 22 (22)     | 2 (2)       |  |  |  |  |  |

## Sunitinib for metastatic RCC

- Phase II, single arm
  - 106 pts with mRCC, 2nd-line
  - Progression under cytokine tx
- Efficacy and AE
  - PR: 34%
  - TTP: 8.3m
  - ↓LVEF: 4.7%( 8pts)
    - 5 pts ↓LVEF>20%
    - No symptom/signs of heart failure

## Sunitinib for metastatic RCC

- Randomized phase III double blind
  - 750 pts with mRCC, 1<sup>st</sup>-line
- Sunitinib vs. IFN-α
  - Sunitinib 50mg/d, 4-wk-on, 2-wk-off
  - IFN-α: 9MU tiw
  - Cross-over allowed
- Efficacy and AE
  - TTP: 11 vs. 5m, HR: 0.42, p<0.001</p>
  - RR: 31% vs. 6%, p<0.001</p>
  - Gr.3 LVEF  $\downarrow$  : 2%, 1%; reversible

## Sorafenib in RCC, phase II

Randomized discontinuation trial

- 202 RCC pts, prior treatment (+)
- 73 pts tumor↓>25% → go on sorafenib
- 65 pts tumor ↓<25% ~↑<25%</li>
  - $\rightarrow$  randomize, sorafenib or placebo
- 24wk-PFS: 50% vs. 18% (p=0.0077)
- Median PFS: 24wk vs. 6wk
- No cardiotoxicity

# Sorafenib in RCC, phase III 903 pts, resistant to cytokine therapy

- Sorafenib 400mg bid po, or Placebo
- Efficacy
  - PFS: 5.5 vs. 2.8m, HR: 0.44, p<0.01
  - RR: 10% vs. 2%
- Adverse effect
  - Diarrhea, rash, fatigue, hand-foot syndrome
  - Cardiac event(ACS): 3%(12) vs. 0.4%(2)

New England Journal of Medicine 2007;356:125-34

## Sorafenib in melanoma and HCC

- Randomized discontinuation trial, 37 pts
- Efficacy : little or no activity
- No cardiotoxicity
  - British Journal of Cancer 2006; 95: 581-586
- 137 HCC pts, Child A/B, advanced HCC
- Phase II, little efficacy, still active
- No cardiotoxicity
  - Journal of Clinical Oncology 2006; 24: 4293-30



### In rat study

#### PDGF

- Artificial MI
- Release of PDGF had better outcome
- VEGF
  - Artificial cardiac stress,
    - Aortic bending or gene activation
    - Increased angiogenesis
  - VEGF blockade
    - LV dilatation, cardiac dysfunction, ↓angiogenesis

Circulation 2006; 114: 637-44

J Clin Invest 2005; 115: 2108-2118 Hypertension 2006: 47: 887-893

#### **VEGF** inhibition

- Has effect on blood vessel densitiy in the heart
- This effect is much more pronounced in younger animals but could also be detected in older animals (MICE)

## **VEGF INHIBITION**

- Its important to note that vegf inhibition results in blood pressure elevation
- Also may result in significant proteinurea
- Both may have significant cardiac effects
- Treatment including ACE inhibitors has some importance in these patients
- Interestingly in a recent meta-analysis, Bevacizumab manifested a not negligible risk of cardiac ischemia and arterial thromboembolic events (3.3%)

#### Induction of chronic, yet reversible, cardiomyocytes dysfunction.



**PNAS** 

©2008 by National Academy of Sciences

## RAF1 and cardiac dysfunction

Cardiac muscle-specific Raf-1-knockout mice

- LV systolic dysfunction and heart dilatation
- Increase in apoptotic cardiomyocytes.
- MEK / ERK : no difference in expression
- ASK1, JNK, or p38: Increased significantly
- The ablation of ASK1
  - Rescued heart dysfunction and dilatation
- Raf-1 promotes cardiomyocyte survival through a MEK/ERK-independent mechanism

#### 1. RAF1 -> MEK -> ERK

2. RAF1-> ASK1,
3. RAF1-> MST2,
J Independent of RAF1 kinase activity, really blocked by Sorafenib ?





- Sutent a direct inhibitor of AMPK
- Adenoviral delivery of constitutely active AMPK blocked some of the cardiomyocite cell death induced by sunitinib
- Its important to note that AMPK is now considered one of the important possible targets for anticancer therapy (metformin = Glucophage)

## Sunitinib

- most of the sunitinib related cardiotoxicity is considered reversible
- It is not always the case
- This is critical if one plans to use high dose IL2 in patients previously treated with vegf inhibitors
- In Israel several patients underwent this treatment safely after a around 4 weeks without sunitinib

## Other inhibitors – the PI3K AKT mTOR inhibitors



## Summary – 1

#### Her2 pathway

• Herceptin: evident, reversible,

- Herceptin alone: 3-7% (metastatic)
- Adjuvant
  - AC→TH : 1.6-4.1%
  - AC→T→H: 0.6-2.5%
  - TCH: 0.4%
  - TH→FEC (FinHer): 0

Lapatinib: 2.4%, less than Herceptin (?)

## Summary – 2

#### ABL pathway

- Imatinib, Dasatinib, Nilotinib
- Not sure for cardiotoxicity, very low
- ER stress-related
  - Actual relation to ABL is not known

## Summary – 3

#### Multi-target inhibitor

- Sunitinib: more cardiotoxic according to
- The sorafenib people....
- Sorafenib:
- PDGF, VEGF, RAF1
- Off-target effect

## RAF1 and cardiac dysfunction

#### • Transgenic mice

- Cardiac-specific expression of a dominant negative form of Raf-1 (DN-Raf).
- DN-Raf mice
  - Normal cardiac structure and function in the absence of provocative stimulation.
- In response to pressure overload,
  - ERK activation was inhibited
  - Development of cardiomyocyte apoptosis
  - 35% of animals died within 7 days