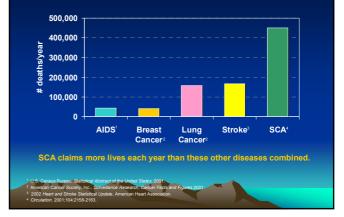
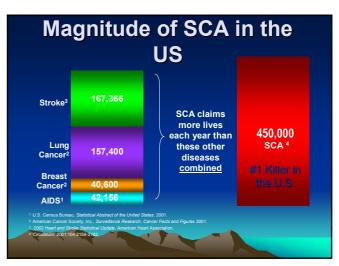


SCA Background

Sudden Cardiac Arrest (SCA) Statistics


• One of the most common causes of death in developed countries:

	Incidence (cases/year)	Survival
Worldwide	3,000,000 ¹	<1%
U.S.	450,000 ²	5%
W. Europe	400,000 ³	<5%


· High recurrence rate

bs A. Cardiac Arrest and Sudden Cardiac D ascular Medicine. 5th Ed. New York: WB Se 2158-2163. JJ et al. J Am Coll Cardiol 1997; 30: 1500-

Magnitude of SCA in the U.S.

Risk Factors for SCA

- Previous Myocardial Infarction (MI)
- Heart Failure and/or decreased LVEF
- Previous Sudden Cardiac Arrest Event
- Prior Episode of Ventricular Tachyarrhythmia (VT)
- Coronary Artery Disease (CAD)
- Hypertrophic Cardiomyopathy (HCM)
- Long QT, Short QT, Brugada Syndromes

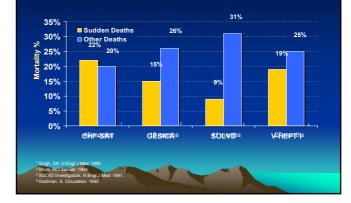
A combination of these risk factors further increases the risk of SCA

Previous Myocardial Infarction

- A previous MI can be identified in as many as 75% of SCA patients.
- A previous MI raises the one-year risk of SCA by 5% as a single risk factor.

Myerburg RJ. Heart Disease, A textbook of Cardiovascular Medicine. 5th ed. Vol 1. Philadelphia: WB Saunders Co: 1997;ch 24.

WK. Mayo Clin Proc. 1991;66:950-962. A.E. N Engl J Med. 2000;342:1937-40.


 The five-year risk of SCA for patients with a previous MI, non-sustained VT, and a LVEF < 0.40 is 24%.

Heart Failure and/or Decreased LV Function

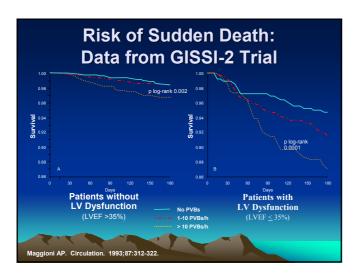
- About one-half of all deaths in heart failure patients are characterized as sudden due to arrhythmias.
- The risk of SCA increases as left ventricular function deteriorates (low LVEF).
- Unexplained syncope has predicted SCA in patients in functional NYHA Class II - IV.

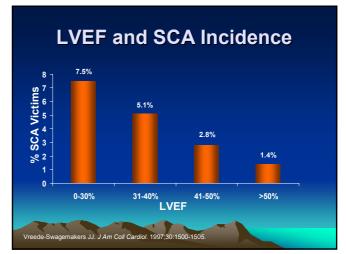
ular Medicine

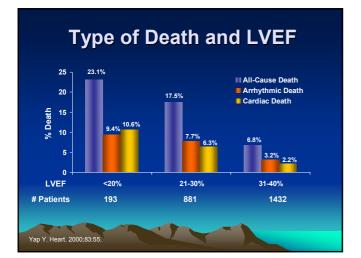
Mortality in Placebo Arms of CHF Trials

CHF Magnitude in the US

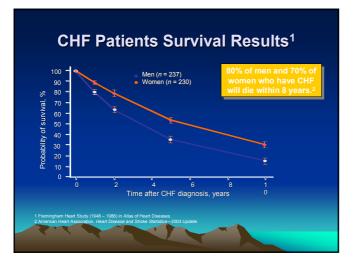
- \approx 5 million have CHF (prevalence)¹
- ≈ 550,000 new cases annually (incidence)¹
- HF most common cardiovascular discharge in elderly patients²
- 25% probability of dying over 2.5 years³
 - 50% of these deaths occur suddenly

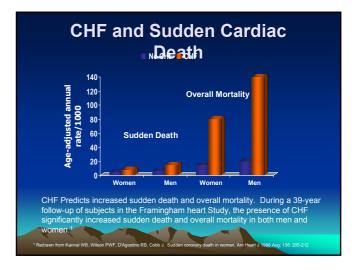

¹ AHA. Heart and Stroke Statistical Update. 2004.
² NHLBI, CHF Data Fact Sheet, September 1996
³ Sweeney MO PACE 2001;24:871-888.

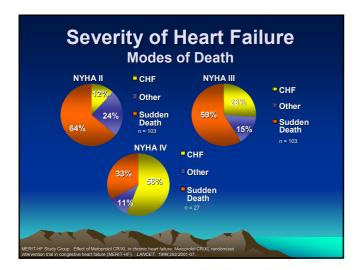

Myerburg RJ. Heart Disease, A Textbook of Card Philadelphia: WB Saunders Co: 1997:ch 24.


Relationship of SCD and Left Ventricular Dysfunction

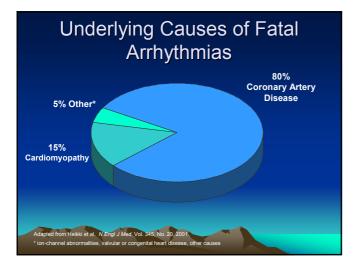
- Reduced left ventricular ejection fraction (LVEF) remains the single most important risk factor for overall mortality and sudden cardiac death.¹
- Increased risk is measurable at ejection fractions above 30 percent, but an ejection fraction equal to or less than 30 percent is the single most powerful independent predictor for SCD.²

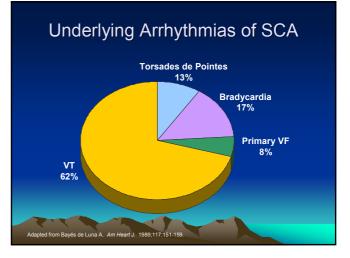

Prior SG, Aliot E, Blonstrom-Lundqvist C, et al. Task Force on Sudden Cardiac Death of the European Society of Cardiology. Eur Heart J, Vol. 22, 16; August 2001. "Myreburg RJ, Cardielano, AC cardiac Arrest and Sudden Cardiac Death, in Braunwald E, Zipes DP, Libby P, Heart Disease, A textbook of Cardiovascular Medicine. 6th ed. 2001. W 8; Saunders, Co. p. 885





In people diagnosed with CHF, sudden cardiac death occurs at 6-9 times the rate of the general population.¹





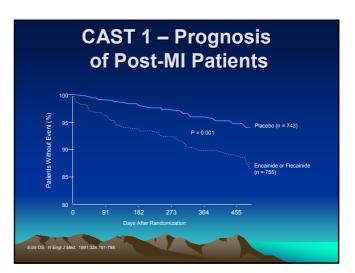
SCD in Heart Failure ^{1, 2}

- Despite improvements in medical therapy, symptomatic HF still confers a 20-25% risk of pre-mature death in the first 2.5 yrs after diagnosis.
- \approx 50% of these premature deaths are SCD (VT/VF)

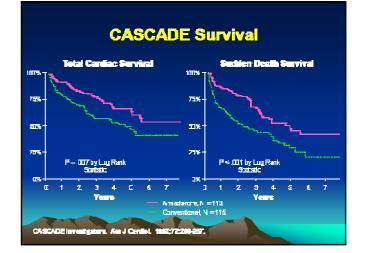
Bardy G. The Sudden Cardiac Deatth-Heart Failure 1 Copyright 2000 by Marcel Dekker, Inc., pp. 323-342,

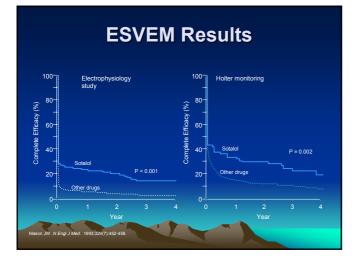
Conclusions on SCA

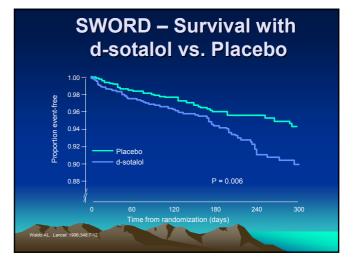
- Post-MI patients with a low left ventricular ejection fraction are at risk for SCA.
- SCA can be prevented if high-risk patients are identified and referred to an Electrophysiologist (EP).

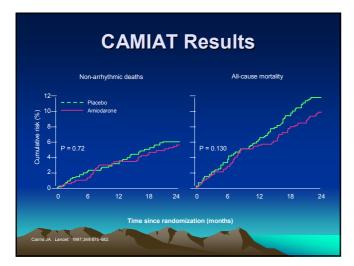

1 7

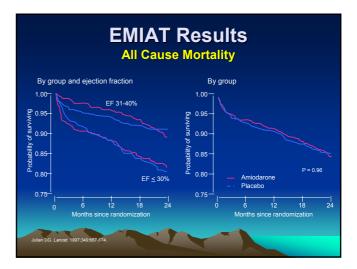
PREVENTION OF SCD


Overview of Antiarrhythmic Drug and ICD Trials


. 1






 Odds Ratio for Total Mortality - gamma for the second s

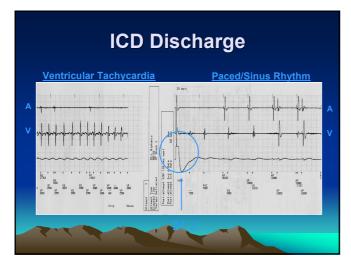
Summary of EMAIT / CAMIAT

- Amiodarone shows a slight improvement in mortality.
- The benefit of amiodarone may be greater in the non-ischemic group but may not be sufficient to to adequately protect patients from SCD.

n, J. Sudden Cardiac Death: Therapy in Evolution. October 2001.

New Class III AA Drugs

- ALIVE studies There was no difference in all-cause mortality between Azimilide and placebo in both the high-risk group (hazard ratio [HR] =0.95, p=NS) and the entire at risk group (HR=1.0, p=NS).
- DIAMOND Studies (Post MI & CHF) Dofelide has no effect on mortality when compared to placebo.


Summary of Drug Trials

At present, regardless of underlying heart disease, currently used specific AA drugs do not improve survival. Furthermore, some of them are harmful.

1

Antiarrhythmic Drug Trials

ICD Trials

AVID

Inclusion Criteria

- VF
- VT with syncope
- VT without syncope, but with hemodynamic compromise, in patients with LVEF < 40%.

17

AVID

Size and Scope of Study

N Engl J Med 1997;337(22):1576-83

n 2000; 101: 1297-1302.

- Multicenter, prospective, randomized, unblinded.
- 4621 patients qualified.
- 1016 patients randomized to ICD or antiarrhythmic drugs (amiodarone or sotalol).

17

• Primary endpoint: all-cause mortality .

AVID

Results:

 Reduction in mortality for ICD patients compared to patients managed with Class III antiarrhythmic drugs:

27%

One year
 One year

 Two years 	

 Three years 			31%
//// / // //	0 00 D	0.001	

• (Hazard ratio = 0.62, P < 0.02)

Conclusion:

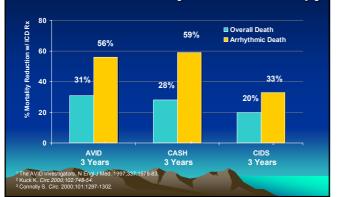
N Engl J Med. 1997;337(22):1576-83

 The ICD was superior to antiarrhythmic drug therapy in prolonging survival among AVID patients.

1 7

CIDS

- Secondary prevention trial.
- Purpose: To compare implantable cardioverter defibrillator (ICD) therapy vs. amiodarone in patients with prior cardiac arrest or hemodynamically unstable VT.
- ICD arm = 328 patients; Amiodarone arm = 331 patients.


1 7

CASH

- Patients resuscitated from cardiac arrest.
- 4 groups of treatment, 100 patients each.
- Randomization to: ICD, Amiodarone, Sotalol & Propafenone.
- Propafenone discontinued because of increased mortality.

	Secondary I D Trials		
	ICD	AA	Total Mortality Reduction
AVID ¹	507	509	31%
CASH ²	99	199	28%
CIDS ³	378	331	19.6% <mark>NS</mark>

Secondary Prevention Trials: Reduction in Mortality with ICD Therapy

CABG-Patch Trial Design

- Primary prevention trial
- Hypothesis: Prophylactic ICD implantation will improve the survival of patients:
 - Receiving CABG surgery
 - Having an EF < 36%
 - Having a positive signal averaged ECG

V 1

900 patients enrolled

New Engl J Med. 1997; 337:1569-1575

Used epicardial ICD lead systems

CABG-Patch Trial Results

Terminated early.

lew Engl J Med. 1997; 337:1569-1575.

- Prophylactic ICD implantation did not appear to improve survival in patients with CAD, LV dysfunction, and abnormal SAECG who undergo elective CABG.
- Effect of coronary revascularization may exceed effect of ICD implantation in a patient population whose control group has a lower mortality than MADIT or AVID.
- Sustained ventricular arrhythmias appear to be a more specific marker than abnormal SAECG in identifying patients at risk for SCD.

Clinical Trials of ICD Therapy in Post-MI Patients

ICD Clinical Trials in Post-MI Patients

MADIT

Multicenter Automatic Defibrillator Implantation Trial Moss AJ. N Engl J Med 1996:335-1933-40.

MUSTT

Multicenter Unsustained Tachycardia Trial Buxton AE. N Engl J Med. 1999;341:1882-90.

MADIT-II

Multicenter Automatic Defibrillator Implantation Trial-II Moss AJ. N Engl J Med. 2002;346:877-83.

1 7

MADIT Multicenter Automatic

Defibrillator Implantation Trial

17

MADIT Hypothesis

In patients with a previous MI and LV dysfunction, prophylactic therapy with an ICD can improve survival versus treatment with conventional medical therapy.

MADIT Endpoints

Primary:

Total mortality

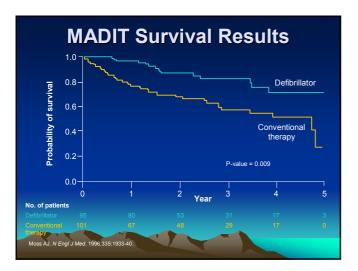
Moss AJ. N Engl J Med. 1996;335:1933-40.

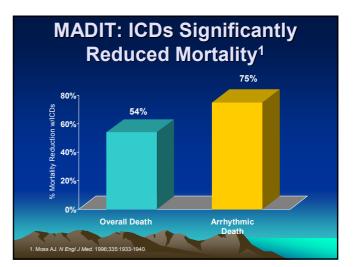
Moss AJ. N Engl J Med. 1996;335:1933-40.

Secondary:

- Arrhythmic mortality
- Costs and cost effectiveness

MADIT Inclusion Criteria


Q-Wave MI
 <u>></u> 3 weeks


Moss AJ. N Engl J Med. 1996;335:1933-1940.

- Asymptomatic, unsustained VT
- LVEF <u><</u> 35%
- Inducible, non-suppressible VT on EP testing w/procainamide
- NYHA Class I-III
- Age 25-80

Moss AJ. N Engl J Med. 1996;335:1933-40.

No requirement for revascularization

MADIT Conclusion

In post-MI patients at a high risk for VT, prophylactic therapy with an implanted defibrillator reduced overall mortality by 54% and arrhythmic mortality by 75% compared with conventional medical therapy.

27

MUSTT Multicenter UnSustained Tachycardia Trial

57

MUSTT Hypothesis

Antiarrhythmic (AA) therapy guided by EP testing can reduce the risk of arrhythmic death and cardiac arrest in patients with:

-CAD

Buxton AE. N Engl J Med. 1999;341:1882-90

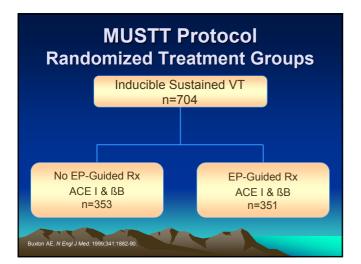
Moss AJ. N Engl J Med. 1996;335:1933-40.

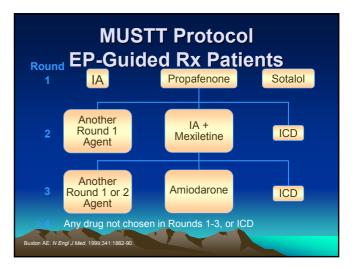
- EF <u><</u> 0.40
- Asymptomatic nonsustained VT
- (> 3 beats, < 30 sec, rate > 100 bpm)

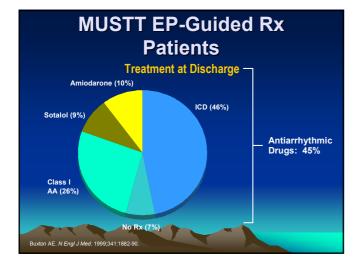
MUSTT Inclusion Criteria

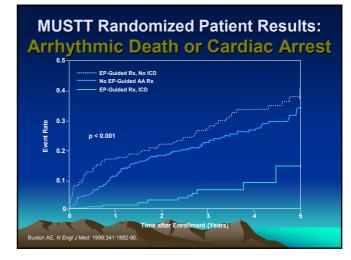
- CAD
- LVEF <u><</u> 0.40

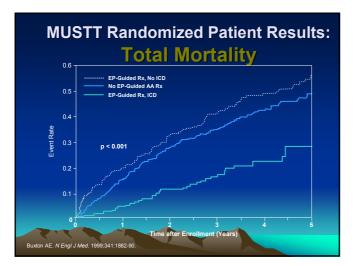
Buxton AE. N Engl J Med. 1999;341:1882-90

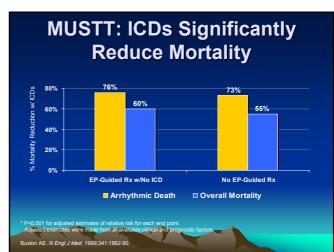

Buxton AE. N Engl J Med. 1999;341:1882-90

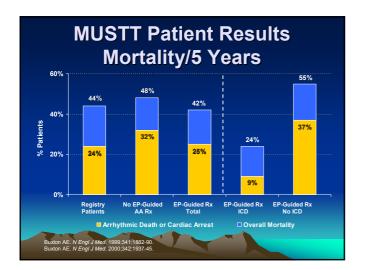

Asymptomatic, unsustained VT


27


Inducible VT on EP testing







For post-MI patients with EF \leq 40%, and asymptomatic NSVT:

- 44% death rate in Registry Patients (non-inducible VT)

- ICD therapy significantly reduced the incidence of death in the patients with inducible VT:
 Arrhythmic death or cardiac arrest (73% 76% reduction)
 Overall mortality (55% 60% reduction)
- EP-guided pharmacologic antiarrhythmic therapy provides no survival benefit
 Kengu J Med 1999;341:1882-90.

17

Moss AJ. N Engl J Med. 2002;346:877-83.

MADIT-II Hypothesis

ICD therapy is able to reduce overall mortality assuming:

- Mortality in control = 19%
- Mortality in ICD = 11.8%

1 7

Moss AJ. N Engl J Med. 2002;346:877-83.

38% reduction in mortality at 2 years

MADIT-II Inclusion Criteria

- Q-wave MI
 <u>></u> 4 weeks
- LVEF ≤ 0.30

Moss AJ. N Engl J Med. 2002;346:877-83.

- > 21 years of age; no upper age limitation
- No requirement for NSVT or EPS

MADIT-II Endpoints

Primary:

 All cause mortality (intention-to-treat analysis)

Secondary:

AJ. Ann Noninvasive Electro

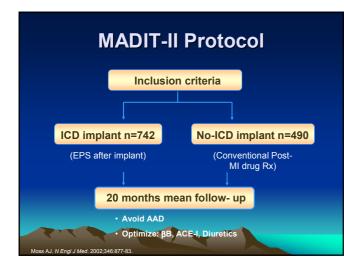
Moss AJ N Engl J Med 2002:346:877-83

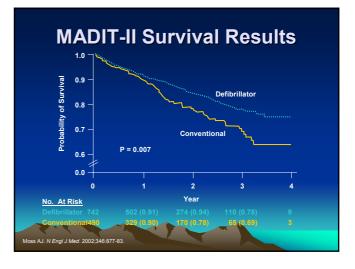
- Predictability of ICD discharge based on VT inducibility at EPS
- Usefulness of SAECG, HRV, TWA in predicting mortality or ICD discharge

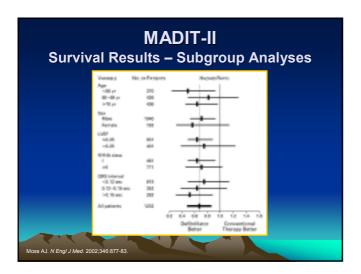
):4:83-91

Cost-effectiveness
Quality of life

<section-header>

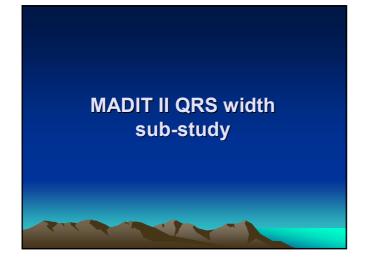

Sequential Monitoring in the Triangular Desig


MADIT-II Treatment Arms

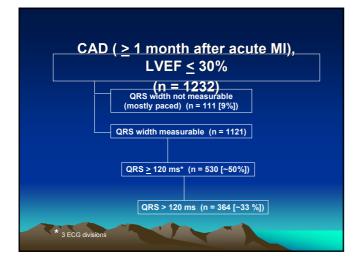

Randomized 1,232 patients using a 3:2 ratio (ICD: non-ICD):

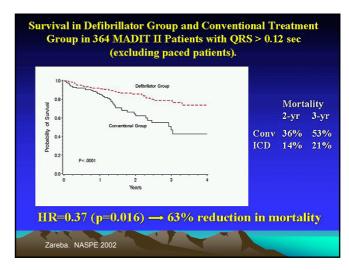
- 742 patients: ICD + conventional post-MI Rx
- 490 patients: Conventional post-MI Rx

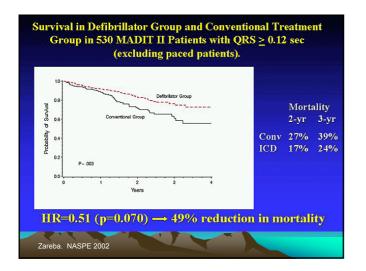
17



MADIT-II Conclusions


For post-MI patients with LVEF \leq 30%:

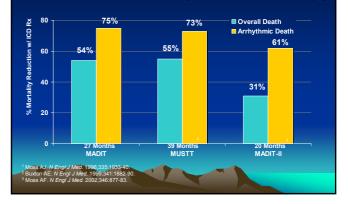

- ICD therapy significantly reduced the incidence of overall mortality by 31%
- ICD therapy provided significant benefit among patients who were on optimal drug therapies.

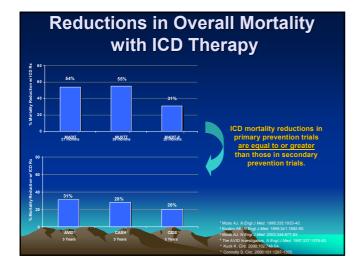

Moss AJ. N Engl J Med. 2002;346:877-83.

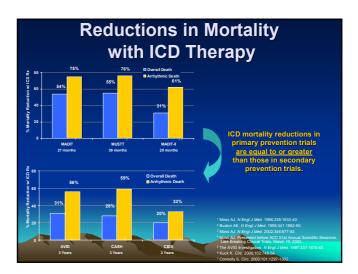
Variable	HR	(95% CI)	P value
Age≥65 years	1.47	(0.86-2.52)	0.164
NYHA ≥II	2.00	(1.20-3.34)	0.008
BUN>25	1.94	(1.17-3.21)	0.010
No BB use	1.57	(0.94-2.66)	0.089
A. Fib.	2.36	(1.14-4.89)	0.021
QRS>0.12 sec	1.90	(1.14-3.14)	0.013



Primary findings


ICD group had mortality reductions, depending on QRS width:


•> 120 ms (33%): 63% lower mortality when compared to conventionally treated patients (HR = 0.37, P=0.016).


•≥120 ms (50%): 49% lower mortality when compared to conventionally treated patients (HR = 0.51, P=0.07).

Primary Prevention Post-MI Trials: Reduction in Mortality with ICD Therapy

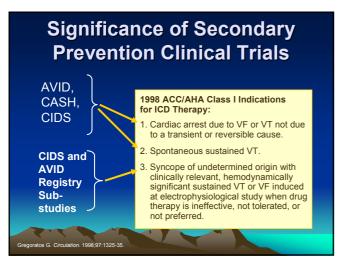
The Defibrillator in Acute Myocardial Infarction Trial (DINAMIT)

Inclusion Criteria

- Occurrence of MI 6 to 40 days prior to enrollment
- Left ventricular ejection fraction (LVEF) </= 35%
- Signs of impaired cardiac autonomic modulation

 Depressed standard deviation of sinus RR intervals
 </= 70 ms
 - Elevated heart rate (mean RR interval </= 750 ms)

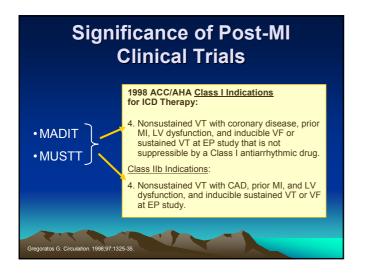
Methods


Patients were screened at 73 centers in 10 countries . Of the 1016 patients who met entry criteria, 674 (66%) agreed to enrollment and were randomized to either OMT plus ICD therapy (n = 332) or OMT alone (control, n = 342).

Conclusions on Post-MI ICD Trials

- Stable (1 month) Post-MI patients with LV dysfunction are at an increased risk of SCA.
- ICD therapy in these patients results in significant reductions in overall mortality (31-55%) over antiarrhythmics or conventional therapy.

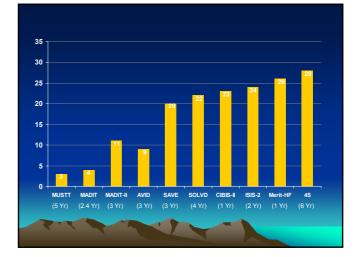
Conclusions on Post-MI ICD Trials


 ICD mortality reductions in stable post-MI patients (primary prevention) are equal to or greater than the mortality reductions achieved in VT/VF trials (secondary prevention). How the Various Clinical Trials Supported the ICD Indications...

Significance of MADIT-II

MADIT-II represents a broader patient group for ICD therapy:

Goals After Myocardial Infarction


- · Reducing the risk of another heart attack
 - Antithrombotic therapy
 - ACE inhibitors
 - Beta-blockers
 - Statins
- Reducing the risk of heart failure
 - Aldosterone antagonists
 - ACE inhibitors
 - Beta-blockers

ICD therapy

• Reducing the risk of sudden cardiac death – Medications: are they enough?

1 7

Number Needed to Treat to Save One Life

Sponsored by The National Heart, Lung, & Blood Institute

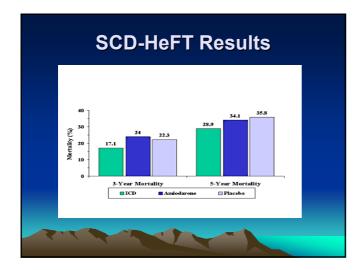
Funding Provided by Medtronic, Inc., & Wyeth

5

Key Trial Question:

Will Amiodarone and/or an ICD improve survival compared to placebo in patients with NYHA Class II and III CHF and reduced left ventricular ejection fraction (\leq 35%) without a history of sustained VT or VF?

SCD-HeFT Inclusion Criteria


- Symptomatic CHF (NYHA class II and III) due to ischemic or nonischemic dilated cardiomyopathy
- LVEF ≤ 35%
- \geq 18 years of age; no upper age limitation
- CHF ≥ 3 months
- ACE I and Beta Blocker therapy if tolerated

SCD-HeFT Endpoints

Primary

- To compare all cause mortality after 2.5 years of follow-up (Power: 90% to detect 25% benefit)
- Secondary
 - Mortality Ischemic, Non-Ischemic, Class II, III,
 - Cause-Specific Death
 - HF Morbidity & Mortality
 - Consistency of treatment effects across sub groups defined by other variables age, gender, EF, Hx of MI, time of MI, QRS width
 - Quality of Life
 - Cost of Care & Cost Effectiveness

SCD-HeFT Protocol Inclusion criteria Placebo n=847 Amiodarone n=845 ICD implant n=829 40 months average follow- up Optimize: βB, ACE-I, Diuretics

SCD-HeFT Results

Measurement	ICD n=	Amiodarone n=	Placebo
Three-year mortality	17.1%	24%	22.3%
Five-year mortality by ITT	28.9%	34.1%	36.1%
Total deaths at study end (n=666)	22% (n=182)	28% (n=240)	29% (n=244)

SCD-Heft Subgroups

Measurement	ICD vs. placebo	Amiodarone vs. Placebo
Mortality in all	.77 HR	1.06
patients	(p=.007)	(p=.529)
	(23% decreased risk)	(6% increased risk)
NYHA Class II	.54	.85
	(46% decreased risk)	(15% decreased risk)
NYHA Class III	1.16	1.44
	(16% increased risk)	(44% increased risk)
Non-ischemic	.73	1.07
patients	(27% decreased risk)	(7% increased risk)
Ischemic patients	.79	1.05
	21% decreased risk)	(5% increased risk)
QRS <120	.84	1.06
QRS≥120	.67	1.05
QROE 120		

Defibrillators in Non-ischemic Cardiomyopathy Treatment Evaluation (DEFINITE) trial.

Study Design

 A total of 458 patients with LV dysfunction (ejection fraction [EF] </= 35%) and nonischemic dilated cardiomyopathy were randomized to either standard oral medical therapy (n = 229) or standard oral medical therapy plus ICD implantation (n = 229). Patients were randomized at 48 centers in the United States and Israel between July 1998 and May 2003.

Inclusion criteria

- Age 21-80 years
- Non-ischemic cardiomyopathy with LVEF </= 35%
- Symptomatic heart failure
- Documented nonsustained ventricular tachycardia (VT) or an average of 10 PVCs/hour on Holter monitor

Outcomes

 Patients were followed for a mean of 26 ± 4 months. A total of 56 deaths occurred in the study (prespecified); 33 in the standard therapy arm and 23 deaths in the ICD arm. Arrhythmic death accounted for 33% of deaths that occurred in the therapy arm and 13% of deaths that occurred in the ICD arm (Figure 1).

Conclusions

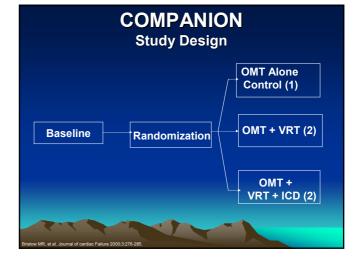
- Patients with non-ischemic cardiomyopathy, severe LV dysfunction, and an arrhythmia marker have an annual mortality of only 6% to 7% when treated with ACE inhibitors and beta-blockers.
- On drug therapy, arrhythmic SCD accounts for only one third of all deaths, a lower proportion than expected.
- ICD implantation reduced arrhythmic death.
- ICD implantation tended to reduce all-cause mortality. The absolute mortality benefit was 5.7% at 2 years. The relative risk reduction was 34% (P = .06).

COMPANION

<u>Co</u>mparison of <u>M</u>edical Therapy, <u>P</u>acing, <u>an</u>d Defibrillat<u>ion</u> in Chronic Heart Failure

17

COMPANION Trial

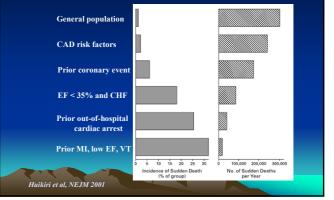

 The trial enrolled a total of 1520 patients with advanced heart failure (NYHA functional class III/IV), a QRS interval of > 120 msec, PR interval > 150 msec, and a left ventricular ejection fraction (LVEF) </= 35%;

17

COMPANION Endpoints

1 7

- Primary
 - All-cause mortality and hospitalizations
- Secondary
 - Cardiac morbidity
 - All-cause mortality
 - Exercise performance
 - sub-study



COMPANION TRIAL RESULTS

Risk Reduction in Primary and Secondary Endpoints

12-Month Outcomes	OPT (n = 30)	CRT (n = 617)	Ρ	CRT-D (n = 595)	Ρ
Primary endpoint*	68%	19%	0.014	20%	0.01
Secondary endpoint [†]	19%	24.00%	0.059	36%	0.003
Combined death fr	om and hosp	italization for:			
Cardiovascular causes	60%	25%	0.002	28%	< .001
Heart failure	45%	34%	0.002	40%	< .001

Patients at risk for sudden cardiac death

