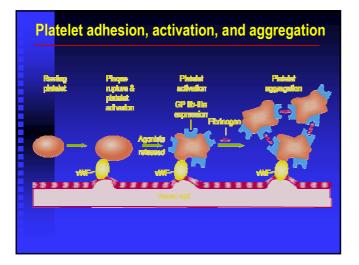
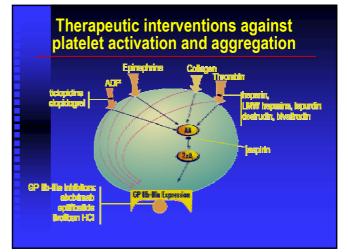


Thrombin


Bivalirudin

Ximelagatran

- Platelets
- Aspirin resistance
- Aggregation
- Thienopyridines
- IIb/IIIa
- Clopidogrel resistance
- Heparin
- LMWH


Anthithrombotics and Anticoagulants

David Hasdai, MD

History of Aspirin

1948 Dr. Lawrence Craven notes 400 pts taking aspirin (aspergum) had not had heart attacks Mississippi Valley Medical Journal

- > 1967 Weiss and Aledort discover aspirin inhibits platelets
- 1982 Sir John Vane awarded Nobel Prize for finding mechanism of dose-dependent inhibition of PG formation
- 1988 FDA approved ASA for reducing risk of recurrent MI, preventing first MI, and preventing recurrent TIA

Potential Mechanisms of Aspirin Resistance

>Noncompliance

- >Insufficient dose
- >Alternative pathway
- >Genetic predisposition
- >Increased prothrombotic milieu
- >Drug interactions

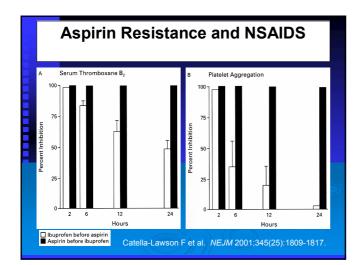
Aspirin Resistance

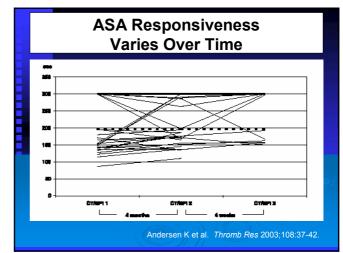
Definition – clinical vs.
biochemical vs. functional
Clinical significance – diagnosis and prognosis

Alternative Pathways: Contribution of COX₂

 COX₁ is the major isoform constitutively expressed in mature human platelets
 COX₂ can also contribute to production of TXA₂

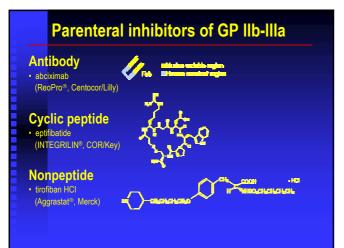
COX₂ upregulation and overexpression could contribute to aspirin resistance as a result of incomplete TXA₂ suppression


Effect of Aspirin Dose


Aspirin Dose, mg/d	Trials, No.	Patients, No.	Odds Reduction, 9
500-1,500	- 30	18,471	\$1 ± 4
160-325	12	23,670	28 ± 3
75	4	5,012	29 ± 7

*Data from Antiplatelet Trialists' Collaboration.¹³

Higher doses may inhibit endothelial prostacyclin production


>No dose-response effect for thrombosis, but there is a dose-response relation for GI side efx

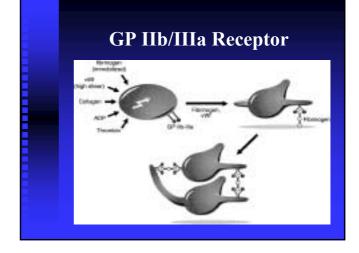
	sensitiv	ve patien	ts
Marker	Aspirin resistant (%)	Aspirin sensitive (%)	р
CK-MB	51.7	24.6	0.00
Troponin I	65.5	38.5	0.012

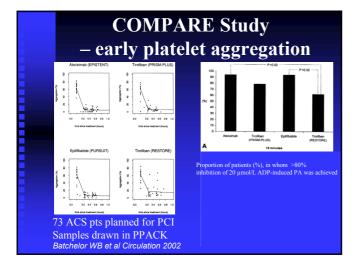
Natural History of Aspirin Resistance	
 > Prospective, blinded > 326 stable patients with CAD who were taking ASA for ≥ 7d, not taking other antiplt drugs > 17 (5.2%) had ASA resistance by optical aggregation at baseline Female Lower Hb > 24% of resistant pts suffered MI, CVA or death vs 10% of responders (p=0.03) 	
Gum P et al. J Am Coll Cardiol 2003;41(6):961-965.	

Glycoprotein IIb/IIIa Inhibitors

Pharmacokinetics and Monitoring

GP IIb/IIIa Receptor

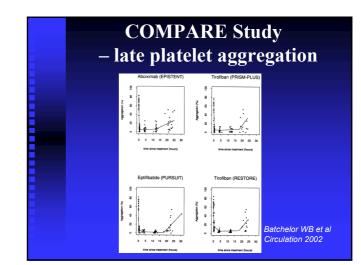

- Upon activation of the platelet (by one of numerous possible routes) conformational change of the receptor occurs → high affinity ligand binding state
- All ligands (fibrinogen, vWF, fibronectin) are characterized by the arginine-glycine-aspartate (RGD) sequence which has been implicated as the binding site to the GP IIb/IIIa receptor
- Fibrinogen is a divalent ligand each molecule can bind simultaneously to two GP IIb/IIIa receptors on adjacent platelets resulting in cross-linking


GP IIb/IIIa Receptor

- Mediates platelet aggregation
- Member of the integrin receptor family can interact with both extracellular and cytoskeletal molecules
- One of the most abundant cell surface receptors (50-80,000 receptors per platelet, 15% of surface protein)
- Ca⁺ ions are critical for maintenance of both structure and function
- In the resting platelet the receptor has minimal binding affinity for ligands fibrinogen and vWF

Platelet Glycoprotein IIb/IIIa Inhibitors

	Abciximab	Eptifibatide	Tirofiban
Specificity			
lib/illa	+++	+++	+++
$\alpha_{v}\beta_{3}$	+++	0	0
MÁČ-1	+	0	0
↓ thrombin generation	1 ++	+	+
Activated clotting time (sec)	30	20	30
Drug:receptor ratio	2	>250	> <u>2</u> 50
Plasma T _{1/2}	Min	2-3 hr	2 hr
Platelet-bound T _{1/2}	Hr	Sec	Sec
Reversibility (hr)	12-24	4-6	4-6
Renal adjustment	Νο	Yes	Yes



Platelet Glycoprotein IIb/IIIa Inhibitors Abciximab Eptifibatide Tirofiban Treatment Platelet Fibrinogen Fibrinogen

	canig	(8-10 units)*	Cryopre- cipitate (8-10 units) or fresh frozen plasma (16-20 units)	Cryopre- cipitate (8-10 units)or fresh frozen plasma (16-20 units)
			Platelets (16-20 units)*	Platelets (16-20 units)*
*Rano	dom don	or		

Why is Monitoring of GP IIb/IIIa Inhibitor Therapy Necessary ?

- 1. Significant variability in the individual response to GP IIb/IIIa inhibitors
- 2. Clinical effect dependent on factors such as renal function (for the small molecule inhibitors) and platelet count (mainly for abciximab)
- Need to evaluate platelet function after the GP IIb/IIIa is withdrawn, for instance before CABG

GOLD Study

- 485 patients undergoing a PCI with planned use of 1 of the 3 approved GP IIb/IIIa inhibitors
- Platelet function evaluated at various time points by RPFA correlated to clinical endpoints – MACE at 30 days
- Platelet inhibition at 10 min and MACE:
 ≥ 95% inhibition ⇒ 6.4% MACE
 < 95% inhibition ⇒ 14.4% MACE (p=0.006)
- Platelet inhibition at 8 hrs and MACE: ≥ 70% inhibition ⇒ 8.1% MACE < 70% inhibition ⇒ 25% MACE (p=0.009) Steinhubl et al, Circulation 2001; 103: 2572-2578

Monitoring of GP IIb/IIIa Inhibitor Therapy – cont.

4. Narrow therapeutic window – low dosages result in higher rates of ischemic complications (e.g. IMPACT II), overdosage increases risk of bleeding

Moderate levels of platelet inhibition (especially for prolonged periods) may also induce <u>prothrombotic + proinflammatory effects!</u>

At high levels of GP IIb/IIIa receptor occupancy \rightarrow inhibitory effect on inflammatory markers, whereas at low levels increase in plateletmonocyte complexes and CD40L (*Li et al ATVB 2000, Nannizzi-Alaimo et al Circ. 2001*)

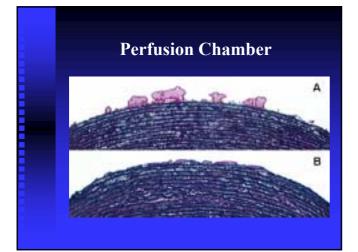
Optical Platelet Aggregation

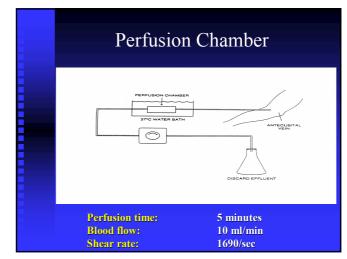
- Most common assay, employs platelet rich plasma (PRP), or less frequently whole blood
- The assay measures light passing through a sample of PRP after stimulation with a platelet agonist
- Advantages: wide use, correlates highly with bleeding time and with clinical efficacy of anti-platelet agents
- Disadvantages: time consuming, requires technical proficiency, high degree of intra-test and inter-laboratory <u>variation</u>, not sensitive at receptor occupancy levels of <30% and >80%

Monitoring of GP IIb/IIIa Therapy

Platelet function assessment:

standard laboratory methods


vs. bedside rapid assays


Perfusion Chamber

- Evaluates total blood thrombogenicity, not just platelet function.
- Venous blood is pumped directly from the patient into the chamber which contains 3 cylindrical flow channels with thrombogenic surfaces
- Porcine aortic tunica media prepared by peeling off the intima serves as a model of severe arterial injury (Badimon J, ATVB 1991)
- Rheologic conditions mimic those typical of a patent artery and mild-moderate coronary stenosis

Flow Cytometry

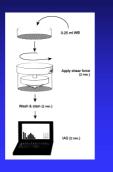
- Becoming the gold standard for platelet function eval.
 FACS measures the specific characteristics of a large number of cells after fluorescent labeling (typically fluorescent conjugated MoAbs)
 Mainly used for evaluation of <u>platelet activation</u>, for instance with FITC-labeled anti-fibrinogen MoAb (measures fibrinogen binding), PAC-1, P-Selectin or platelet-monocyte complexes
 Can also be used for evaluation of GP IIb/IIIa receptor occupancy (MoAbs for the binding sites)
 Advantages: accurate, measures many aspects of platelet function , low variability in results
 Disadvantages: Time consuming, requires very high
 - Disadvantages: Time consuming, requires very high technical proficiency, expensive

Accumetrics' Ultegra® System

- Ultegra Rapid Platelet Function Assay (RPFA) is a cartridge-based, automated rapid assay that is based on the interaction between platelet GP IIb/IIIa receptors and fibrinogen-coated beads leading to the agglutination of the beads.
- The assay incorporates anticoagulated whole blood, fibrinogen beads, buffers and modified TRAP. Results expressed as percentage of baseline.
- High correlation to aggregation and FACS (r>0.8)
- Disadvantage: price, requires baseline sample

Smith et al, Circulation 1999; 99:620-5

Monitoring of GP IIb/IIIa Therapy


Platelet function assessment:

standard laboratory methods

vs. bedside rapid assays

Cone and Plate(let) Analyzer CPA

- Measures platelet deposition under Measures platelet deposition under high shear rate flow conditions. Whole blood is placed on wells. Shear force is applied, using a rotating cone (1300 sec⁻¹, for 2 min). Samples washed and stained.
- washed and staned. Surface platelet deposition is evaluated using an image analyzer. 4 samples can be analyzed during less then 10 min. A fully automatic
- version of the CPA is currently being
- developed High correlation to aggregation and FACS (r>0.8)

Accumetrics' Ultegra® System

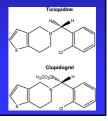
Insert cartilage

Insert whole blood sample

Results within 60 sec

CLOPIDOGREL

Pharmacokinetics, Response and Variability



Pharmacokinetic properties

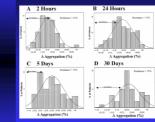
- Requires metabolism by the hepatic cytochrome P450-1A enzyme system to acquire activity
- Peak plasma concentrations of the main circulating metabolite, an inactive carboxylic acid derivative occur at 1 hour.
- Active metabolite identified in vitro by incubation of human liver microsomes (Pereillo JM et al Drug Metabol and Disp 2002)
- **Contrary to ticlopidine, its bioavailability is** unaffected by food

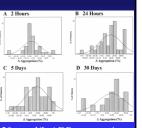
CLOPIGOGREL

- A thienopyridine , inhibits ADP induced platelet aggregation
- The specific target of inhibition appears to be the P2Y₁₂ receptor
- Fewer side effects than ticlopidine

P2Y Receptors

- The effect of ADP on platelets is mediated by two P2Y receptors P2Y₁ and P2Y₁₂
- Activation of the P2Y₁ receptor leads to platelet shape changes and a rapid reversible wave of platelet aggr.
- Activation of the G-coupled P2Y₁₂ receptor leads to a progressive and sustained wave of platelet aggr. (mediated by inhibition of adenylate cyclase) as well as activation of GP IIb/IIIa by another pathway
- The P2Y₁₂ receptor is the target of clopidogrel (metabolite)
- Clopidogrel also inhibits platelet aggregation induced by other agonists, by inhibiting the effects of ADP released from platelet dense granules (in activated platelets)


Pharmacdynamic properties


- Dose dependent inhibition of platelet aggregation can be seen 2 hours after a single dose
- Inhibition of ADP induced platelet aggregation reaches a maximum of 40% to 60% after 3 to 5 days. Similarly, recovery of platelet function is delayed after discontinuation, occurring slowly over 3 to 5 days

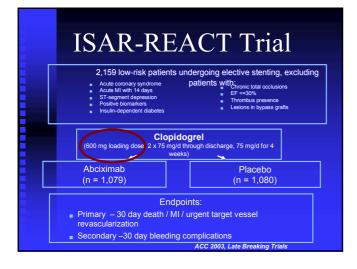
Response to Clopidogrel

- Marked interindividual variability in response to clopidogrel as measured by inhibition of aggregation.
- "Resistance", defined as baseline aggregation minus post-treatment aggregation ≤10% by 5 µmol/L ADP, was present in 31% and 15% of patients at 5 and 30 days. Gurbel P et al Circulation 2003
- 5-11% non responders (≤10% delta in ADP aggr.) and 9-26% semi-responders (10-29% delta) in the study of Muller et al Throm Haemost 2003

Response to Clopidogrel

5 µmol/L ADP aggregation

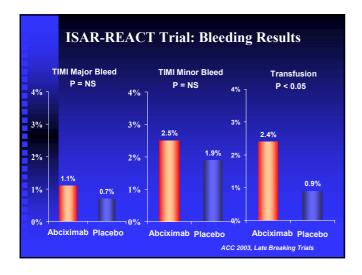
20 µmol/L ADP aggregation

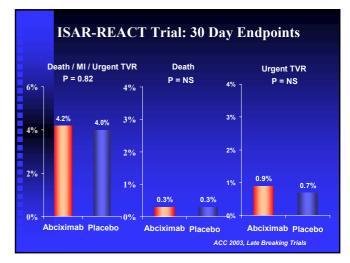

96 patients undergoing elective PCI *Gurbel P et al Circulation 2003; 1107: 2908-13*

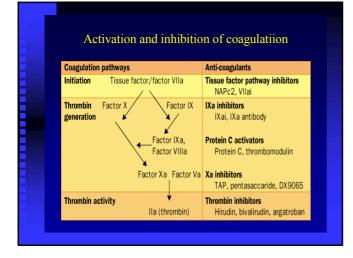
Clopidogrel – Statin Interaction

- "Atorvastatin reduces the ability of clopidogrel to inhibit platelet aggregation: a new drug-drug interaction" Law W et al Circulation 2003; 107: 32-7
- Atorvastatin, but not pravastatin, attenuated the antiplatelet activity of clopidogrel in a dose-dep. manner
- Pro "Lipophilic statins interfere with the inhibitory effects of clopidogrel on platelet function – a flow cytometry study". <u>Neubauer et al EHJ 2003; 24: 1744-9</u>
- Con "Effect of statins on platelet inhibition by a loading dose of clopidogrel" Muller et al Circ, 2003; 108: 2195-7

Possible Reasons for Low Response

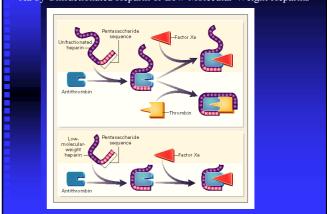

- Mutations in the ADP receptor P2Y₁₂ 5 frequent polymorphisms identified in the gene for the P2Y12 receptor. Among <u>healthy volunteers</u>, two groups of subjects with low and high responsiveness to ADP aggr. were identified and associated to one of the polymorphysims. *Fontana et al Circulation 2003; 108: 989-95*
- Interaction with other drugs mainly drugs metabolized by cytochrome P450-1A (CYP3A4)
- Differences in the rate of conversion of clopidogrel to its active metabolite

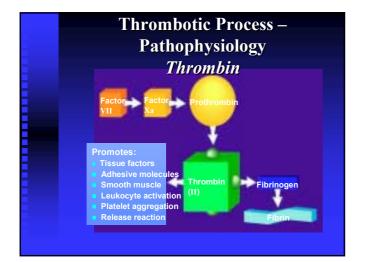


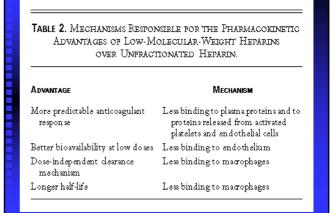

Cardiovascular events according to antiplatelet effect of clopidogrel

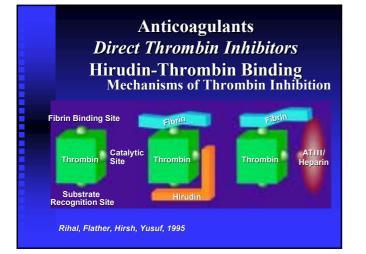
Quartile according to % reduction of ADP-induced platelet aggregation	Platelet aggregation at day 6 (as % of baseline)	% of patien with a CV event at 6 months
1	103	40
2	69	6.7
3	58	0
4	33	0

(Matetzky S et al. Circulation 2004

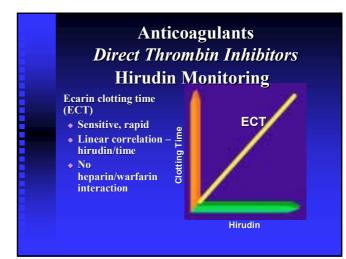


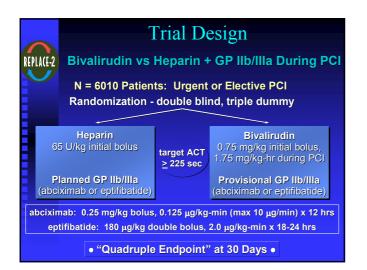


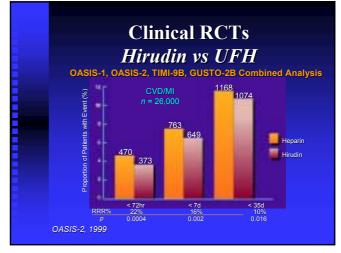


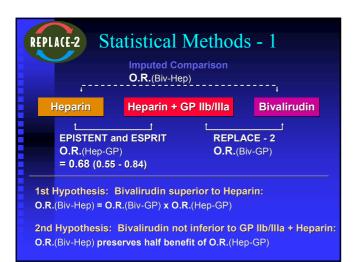

Preparation	Method of Preparation	Mean Molecular Weight	Anti-Xa Anti-IIa Ratio*
Ardeparin (Normiflo)	Peroxidative depolymerization	6000	1.9
Dalteparin (Fragmin)	Nitrous acid depolymerization	6000	2.7
En oxaparin (Loven ox)	Benzylation and alkaline depolymerization	4200	3.8
Nadroparin (Fraxiparine)	Nitrous acid depolymerization	4500	3.6
Reviparin (Clivarine)	Nitrous acid depolymerization, chromatographic purification	4000	3.5
Tinzəpərin (Innohep)	Heparin ase digestion	4500	1.9

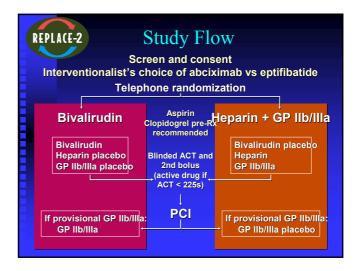
*The ratios were calculated by dividing the anti-factor Xa (anti Xa) activity by the antithrombin (anti-IIa) activity. The ratios are based on information provided by the manufacturers. Catalysis of Antithrombin-Mediated Inactivation of Thrombin or Factor Xa by Unfractionated Heparin or Low-Molecular-Weight Heparins

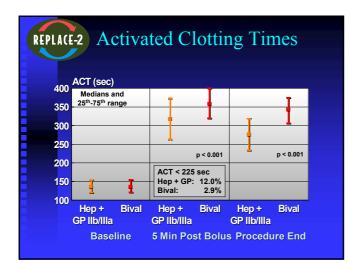


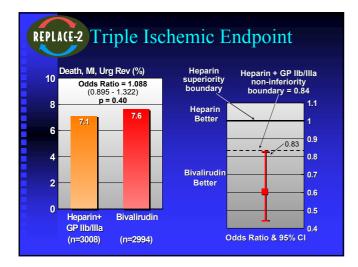

Anticoagulants *Direct Thrombin Inhibitors* Hirudin

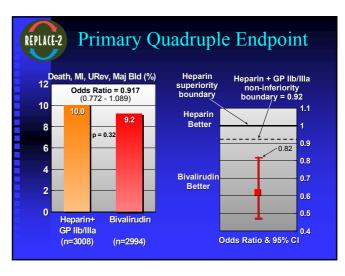

- 65 amino acid protein
- Originally identified in saliva of medicinal leech (*Hirudo medicinalis*)
- Now available through recombinant DNA technology (lepirudin and desirudin)

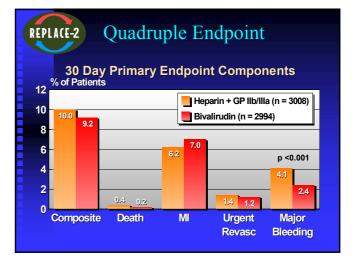

Anticoagulants Direct Thrombin Inhibitors Hirulog


- Synthetic antithrombin agent
- Not as potent as hirudin in binding to thrombin
- Investigated in an angioplasty population
- Has shown modest benefits compared to heparin, with lower bleeding risks
- Under investigation for acute MI









REPLACE-2 IIb/IIIa Inhibitors					
	H Bivalirudin ((N = 2994) (I				
Planned GP llb/llla (%)	0.07	96.3			
abciximab (%)	0	42.9			
eptifibatide (%)	0.07	53.4			
Provisional GP IIb/IIIa (%)	7.2 *	5.2 *			
abciximab (%)	3.5	0			
eptifibatide (%)	3.7	0			
placebo (%)	0	5.2			

	ESTEEM: Post-hoc analysis					
]	End point	Placebo (%)	Combined ximelagatran groups (%)	Hazard ratio (95% CI)		
no	All-cause mortality, nfatal MI, nonfatal stroke	11.1	7.4	0.66 (0.48-0.90)		

ESTE	ESTEEM: Primary end point						
End point	t Placebo (%)	Combined ximelagatran groups (%)	Hazard ratio (95% CI)				
All-cause mortality nonfata MI, severe	γ, 1	12.7	0.76 (0.59-0.98)				
recurren ischemia	t						

Outcome Thromboembolic events	Warfarin 93	Ximelagatran 91	р 0.94
(n)			
Primary event rates (all strokes plus SEE) (%/yr)	1.7	1.6	0.941
Secondary event rates (%/yr)	3.3	2.8	0.625
Major bleeding rates (%/yr)	2.5	1.9	0.054
Combined minor and major bleeding rates (%/yr)	39	32	<0.000
ALAT levels >3 times normal (%)	0.8	6.1	HS*

ESTEEM: Bleeding complications					
End point	Placebo (%)	Combined ximelagatran groups (%)	Hazard ratio (95% CI)		
Major bleeding	1	2	1.97 (0.80-4.84)		
Total bleeding (major or minor)	13	22	1.76 (1.38-2.25)		

