Percutaneous Intervention in Valvular Heart Disease: MS & MR

Yoav Turgeman

Heart Institute

HaEmek Medical Center

Afula, Israel

Worldwide perspective of VHD;

- -Epidemiology: Western Vs Developing countries
- -Classification, Categorization, Definitions:

Single, Multi, Mixed, Combined

Pathophysiology, Mechanisms & Hemodynamics

Severity: Subjective/Objective

-Approach: Structure/Morphology & Functioning interrelations

Ventricular function

- Indications Vs Contraindications for Intervention

Therapeutic Aim:

maintaining native valve normal function!

Mitral valve apparatus;

Anatomical Vs Functional Elements

Annulus LA Wall

Leaflets

Chordae Tendinae LV Wall

Papillary Muscles

A valve may function normally and yet be anatomically abnormal!

Beware of anatomical variations!

Keeping Native Structures; Maintaining Function!

Assessment of Structure & Function of Rh MS:

Non Invasive - Cardiac Auscultation; The issue of pliability

- -Echocardiography; Morphology & Function
- The different Scores

Invasive - Fluoroscopy

- Fluoroscopy; Calcification

-Ventriculography: MSDR

-LA- Pressure Wave Analysis: LAC- Wave

During PBMC- "Balloon impasse "- sign

-"Balloon Compression "-sign

The Phenomen of Rheumatic Frozen Post Mitral Leaflet;

The Single Wing Door Mechanical Model

Equivalent model

Mitral ring annuloplasty

Ant. An Segment

Post An. Segment

Different Echocardigraphic scores

- 1. T Wilkins, V Abascal 1988-MGH
- 2. C Reid -1989-USC
- 3. B Cormier -1994 Tenon, & Bichat
- 4. R Padial -1996 -MGH-(for MR prediction)
- 5. D Shaw 2000-WGH- Ed-UK-(for commissural calcification)

Table 5: Anatomic classification of the mitral valve (Massachussetts General Hospital, Boston):
echocardiographic examination

Leaflet Mobility

- 1. Highly mobile valve with restriction of only the leaflet tips
- 2. Midportion and base of leaflets have reduced mobility
- 3 Valve leaflets move forward in diastole mainly at the base
- 4. No or minimal forward movement of the leaflets in diastole

Valvular Thickening

- 1. Leaflets near normal (4-5mm)
- 2. Midleaflet thickening, marked thickening of the margins
- 3. Thickening extends through the entire leaflets (5-8 mm)
- 4. Marked thickening of all leaflet tissue (>8-10 mm)

Subvalvular Thickening

- 1. Minimal thickening of chordal structures just below the valve
- 2. Thickening of chordae extending up to one third of chordal length
- 3. Thickening extending to the distal third of the chordae
- 4. Extensive thickening and shortening of all chordae extending down to the papillary muscle

Valvular Calcification

- 1. A single area of increased echo brightness
- 2. Scattered areas of brightness confined to leaflet margins
- Brightness extending into the midportion of leaflets
- Extensive brightness through most of the leaflet tissue

Source: Wilkins GT, Gillam LD, Weyman AE, et al. Percutaneous balloon dilatation of the mitral valve: an analysis of echocardiographic variables related to outcome and the mechanism of dilatation. Br Heart J 1988; 60: 299-308.

Note: The final score is found by adding each of components.

Our daily practice Commissures Chordae T.Length Ant Mitral Leaflet

Table 6: Anatomic classification of the mitral valve

Echocardiographic Group	Mitral valve anatomy Pliable noncalcified anterior mitral leaflet and mild subvalvular disease, i.e., thin chordae ≥ 10mm long		
Group 1			
Group 2	Pliable noncalcified anterior mitral leaflet and severe subvalvular disease, i.e., thickened chordae < 10 mm long		
Group 3	Calcification of mitral valve of any extent, as assessed by fluoroscopy, whatever of subvalvular apparatus		

Source: Iung B, Cormier B, Ducimetiere P, et al. Immediate results of percutaneous mitral commissurotomy. Circulation 1996; 94: 2124-2130

Severe stenosis but no bright echos across either commissure

Grade: 0+0+0+0=0

Bright echos extending across one half of posteromedial commissure

Grade: 1+0+0+0=1

Grade: 1+1+0+0=2

Bright echos across half of each commissure

Bright echos across all of posteromedial and half of anterolateral commissure

Grade: 1+1+0+1=3

150 150

12:34:57 03/04/97 Cond: REST CO: 1.7 25 mm/sec TMG-0.08sec

Ventriculography: MSDR:MV-PM/AV-LVA

-Short rigid CT: DR<0.14 (n~0.24)

Circ 1960 ;60:I-71 CW Akins et al.

AORTIC VALVE TO EFT VENTRICULAR APEX IN DIASTOLE (AV-LVA)

MITRAL VALVE TO
PAPILLARY MUSCLE TIP IN SYSTOLE
(MV-PM)

Management of Rheumatic MS:

1. Directed to primary valve pathology: dilatation-PMI

-Surgery

Replacement- Mechanical

- Biological

2. Directed to secondary phenomenae:

Slowing heart rate, maintaining NSR

Congestion

Thromboembolism

LV dysfunction

Infections

Technique

Antegrade approach: needs TSLHC

Balloon Vs Non balloon techniques

Single Vs Multiple balloons

Over the wire Vs Non wire guided

Retrograde approach:no need for TSLHC

Criteria for successes; Opt. sub optimal

Complications related to: Vascular access

TSLHC

Valvular dilatation

Atrial Septostomy ;Static Vs Dynamic -after TSP

Guided by:

Fluoroscopy

Echo:TTE, TEE, IVS

Intracavitary ECG

Single shaft-DB

Simple Operative Procedure:

①Insert the balloon stretching tube into the balloon catheter to narrow the outer diameter of the balloon.

②Remove the balloon stretching tube and pull the inner tube.

I

N

U

E

Antegrade approach – needs TSLHC

OVER THE WIRE

Double Balloon Tech.

Non OVER THE WIRE Inoue Balloon –SB Tech

Retrograde approach

No need for TSLHC

FIGURE 2. Placement of the guiding catheter (GC) below the mitral valve (MV). A and B, anterior oblique views. LA = left atrium. Other abbreviations as in Figure 1.

FIGURE 3. Introduction of the 0.025-inch guidewire (GW) to the atrial cavity (LA). Right anterior oblique view. Other

PMI- Mechanical Commissurotomy

Positioning

Dilating

Prediction of outcome of PBMC: Multifactorial

- -Morphological characteristics of the valve
- -(Commissures, AML-morphology, mobility, CT-length)
- Age, FC, AF, s/p surgery, LA size, PHT, TR, LV-function
- Effective balloon dilating area
- Final MVA
- Experience of the team

Issues to be discuses

Associated MR, LA thrombi, LV function,

Associated V.H.D

Non Pharmacologic Therapeutic Modalities in Rheumatic MS;

Consider:

Pts: Age, Fertility period, life expectancy, compliance

AF (Maze procedure)

Needs Vs Risk of Anticoagulation

Associated Valvular Abnormalities, Comorbidities

Valvular Morphology and Function

PHT, LV Function

CI to Surgery Vs PCMI

Complexity & Durability of Therapeutic Approach

Mitral Regurgitation

Classifications:

Primary, Secondary

Based on etiology: Degenerative, Ischemic

Acute, Chronic

Congenital Acquired

Surgical Mitral Valve repair

Successful "corrective" operation: restores longevity and quality of life

The choice of operation depends on etiology, mechanisms, experience of surgeon

Surgical Degenerative MR: Leaflet repair techniques + annuloplasty ring

Concepts FMR: Annuloplasty approaches

IMR: Coronary revascularization +reduction annuloplasty

Can we mimic it in the Cath Lab? Oh yes we can!

Trans catheter MV Therapies

MV -Leaflet Interventions: Either the Clip or the Stitch techniques

Isolated approach: only in A2 –P2 pathologies

Freedom from Reop. & Rec MR for 12 years :80%

MV – Leaflet Interventions: Beware of the Limitations!

Look for:

Leaflet morphology, anatomy & MR jet (only 20% are suitable based on Echo Cr)

A team approach technique

Device: Clip can reposition, removed 2nd clip can be placed

EVEREST – I: Feasibility & Safety

Acute procedure success:73%

30 days MACE:7%

Hospital stay<2 days 85%

2 years freedom death , Rec. Surg or Rec MR -80%

JACC 2005;462134-40

EVEREST –II: Randomizing Pts

PVI Vs Standard Surgery

Mitral Valve Annuloplasty

MV Annular reduction diameter

The Indirect (CS) & Direct techniques

Indirect: via CS

Monarc Device (Edwards Lifescinces), Carillon (Cardiac Dimension), Viacor

Limitations of the CS approach

- -CS doesn't directly parallel to the mitral annulus
- -The issue of the Cx artery
- -CS erosion, thrombosis
- -CS: A conduit for CRT, Retrograde cardioplegia

Direct Mitral Annuloplasty

The Mitralign Device (Tewksbury, Mass)

Transpericardial Annulus & LV Remodeling

Ann Thorac Surg 2005;:80:1706-11

SLAC:Septal to Lateral Annular Cinching tech.

Off Pump Approach

Coapsys surgical system(Myocor, Minn)

Applying tension on both MA & basal LV cavity

The Transventricular bridge iCoapsys:Percutaneous approach

Analogous to the surgical plication tech.

J Thorac Cardiovasc Surg 1977;73:589-95

SL enlargement is the final common pathway of FMR or IMR

Miller DC et al.Circ 2001;104:I-47-53

Percutaneous septal-sinus shortening procedure

Effective procedure in ameliorating FMR in ovine tachycardia model. Rogers JH et al *Circ 2006 ;113:2329-34*

Transatrial bridge PS³ system

A B C	Echo Data	SLS mm	MR grade
D E F	В	32±5	2.1 ±0.6
	A 30 days	24 ±2	0.4 ±0.1

Lets be honest and confess:

:"Many pts are willing to have everything fixed percutaneously"

- 1. Less pain, less trauma
- 2. Less invasive
- 3. Early recovery
- 4. Short hospital stay
- 5. Cheaper procedure

The train of PVI left the station

"Real progress is undertaken when we look to the sky but still stand on a <u>solid</u> ground "

Nicolaus Copernicus 1473-1543

but