1550125

Endovascular Non Thermal Irreversible Electroporation Attenuates Post-Angioplasty Luminal Loss and Neointimal Formation in New-Zealand White Rabbits

<u>Maor, E</u>¹; Ivorra, A²; Mitchell, J³; Rubinsky, B² ¹Sheba Medical Center, Tel-Hashomer, Israel; ²University of California, Berkeley, USA; ³Angiodynamics, Queensbury, USA

Using fundamental principles of electroporation and computer simulations of temperature and electrical fields we developed a novel endovascular ablation approach - non thermal irreversible electroporation (NTIRE), which selectively destroys cellular components of the arterial wall without affecting the extracellular scaffold. METHODS: Computer simulations were used to demonstrate that NTIRE does not induce thermal damage to the arterial wall. Using an endovascular approach, a custom made device was used in-vivo to apply ninety NTIRE pulses to the right iliac arteries of eight New-Zealand white rabbits. Evaluation at 7 and 35 days included H&E, Masson's trichrome, elastic Von Gieson, smooth muscle actin, proliferating cell nuclear antigen, Von Willebrand, and S-100 antigen. In addition, 24 iliac arteries of 12 additional animals were used to evaluate the effect of NTIRE on luminal loss at 35 days in a rabbit model of balloon angioplasty. RESULTS: One week after NTIRE, normal iliac arteries experienced complete transmural and circumferential cellular ablation, minimal damage to extra-cellular components and re-endothelialization. After five weeks there was no evidence of vascular smooth muscle cells (VSMC) regeneration and. In angioplasty-damaged arteries, results at 35 days demonstrated the ability of NTIRE to significantly reduce post-angioplasty luminal loss. Compared with controls, NTIRE-treated arterial segments were wider (0.85±0.18 vs. 0.58±0.22 cm2, p = 0.001), experienced less luminal loss ($18\% \pm 19\%$ vs. $38\% \pm 24\%$, p<0.001), demonstrated wider point of maximal stenosis $(0.21\pm0.09 \text{ cm vs}, 0.11\pm0.06, p = 0.004)$, and showed less neointimal formation $(3.91\pm1.39 \text{ vs. } 2.64\pm2.29 \text{ mm2}, p < 0.001)$. The results suggest that NTIRE can ablate cells with minimal damage to extra-cellular components, minor inflammatory response and limited VSMC regeneration. NTIRE holds the potential to treat restenosis and cardiac arrythmias.