Initial Assessment of a Novel Radioactive Tin-117m Stent in Porcine Coronary Arteries

Refat Jabara ^{1,2}, Jinsheng Li ², Suresh Srivastava ³, Lakshmana Pendyala ², Nicolas Chronos ², Keith Robinson ²

¹ Heart Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel, ² Cardiovascular Research Institute, Saint Joseph's Hospital, Atlanta, GA, ³ Brookhaven National Laboratory, Upton, NY, USA

Background: Tin-117m (^{117m}Sn) is a novel conversion electron emitting radioisotope that deposits intense energy in a very short range. It can deliver high doses of radiotherapy to a target while minimizing collateral damage to adjacent normal tissue, and has been used clinically in the management of bone pain associated with osteosarcoma. There are several potential cardiovascular applications of ^{117m}Sn, one being an electroplating on stents; since the coronary media is 0.2-0.3mm thick, no adjacent tissue exposure would result.

Objective: To assess the feasibility and coronary artery effects of an^{117m}Sn-electroplated stent in a clinically relevant animal model.

Methods: 72 stents of 3 types were implanted in pig coronaries: Bare metal stents (BMS, n=14), Tin-only sham electroplated stents (Tin-only, n=15), and three incremental doses of radioactive 117m Sn electroplated stents (Low 30 μ Ci, n=14; Medium 60 μ Ci, n=14; and High 150 μ Ci, n=15). Pigs were terminated at one month for complete histological analysis.

Results: Intimal thickness varied according to stent type with highest level for the Low, Medium and High radioactive stents compared to BMS and Tin-only $(0.43\pm0.06\text{mm}, 0.41\pm0.06\text{mm}, \text{and } 0.47\pm0.07\text{mm}, \text{vs. } 0.17\pm0.02\text{mm}, \text{and } 0.26\pm0.03\text{mm}, \text{respectively, } P<0.001). % area stenosis was higher for radioactive stents compared to BMS and Tin-only <math>(51\pm6\%, 51\pm4\%, \text{ and } 55\pm5\%, \text{ vs. } 27\pm2\%$ and $35\pm3\%$, respectively, P<0.001). There was consistently a distinct, discrete, dense collagenous ring of tissue which included a densely cellular outer rim, in the perivascular space at the outer adventitial border \sim 0.2-0.3mm radially outward from $^{117\text{m}}$ Sn stents. This appears to reflect a unique biological effect or 'signature' of this radioisotope in this application.

Conclusions: This study showed that novel radioactive ^{117m}Sn stents were compatible with porcine coronary artery implant. Although these devices exacerbated rather than inhibited in-stent neointima formation, unique histological effects were observed that support further investigation of ^{117m}Sn effects in the circulatory system to understand the interaction of this unique conversion electron energy with the vascular tissue.