BENEFIT OF CRT IN MILDLY SYMPTOMATIC HEART FAILURE RECENT DATA FROM MADIT-CRT AND RAFT

Ilan Goldenberg MD Professor of Cardiology Sheba Medical Center and Tel Aviv University, Israel University of Rochester Medical Center, Rochester NY, USA

POINTS FOR DISCUSSION

Reverse remodeling and subsequent outcomes

Effect in subgroups

 Effect on ventricular and atrial tachyarrhythmias

REVERSE REMODELING AND DYSSYNCHRONY

BACKGROUND: MADIT-CRT Moss et al. NEJM, 2009

• 1820 ICM/NICM pts:

- > EF ≤ 30%
- > QRS ≥ 130 msec
- > NYHA I/II
- Randomization:
 - → CRT-D vs. ICD-only
 - **对** 3:2 ratio

• Outcome:

> HR=0.66 (p=0.001)

MADIT-CRT: ECHO RESPONSE Solomon et al et al. Circulation, 2010

Improvement at 1 yr:

- **↗ LVEDV**
- **⊅ LVESV**
- 71 LAV
- ∧ LVEF

MADIT-CRT: ECHO RESPONSE AND SUBSEQUNT CLINICAL RESPONSE Solomon et al et al. Circulation, 2010

	Primary End Point of First of Heart Failure o	st Occurrence r Death	All-Cause Mortality		
	Adjusted for Treatment and Ischemic Status	Multivariable Adjusted*	Adjusted for Treatment and Ischemic Status	Multivariable Adjusted*	
Percent improvement in end-diastolic volume (per 10% decrease)	0.61 (0.51, 0.71)	0.60 (0.51, 0.72)	0.73 (0.54, 0.97)	0.79 (0.59, 1.06)	
Ρ	<0.001	< 0.001	0.032	0.11	
Percent improvement in end-systolic volume (per 10% decrease)	0.72 (0.65, 0.80)	0.72 (0.65, 0.84)	0.79 (0.66, 0.95)	0.83 (0.68, 0.99)	
Ρ	<0.001	< 0.001	0.011	0.047	
Increase in ejection fraction (per 5 percentage points increase)	0.61 (0.50, 0.73)	0.60 (0.50, 0.72)	0.67 (0.50, 0.90)	0.69 (0.51, 0.93)	
Ρ	< 0.001	<0.001	0.007	0.014	

MADIT-CRT: LEFT ATRIUM AND SUBSEQUNT CLINICAL OUTCOME Goldenberg et al. Unpublished

MADIT-CRT: RIGHT VENTRICLAR REMODELING Solomon et al et al. Circulation HF, 2012

MADIT-CRT: DYSSYNCHRONY Solomon et al. European Heart Journal, 2011

MADIT-CRT: DYSSYNCHRONY Solomon et al et al. European Heart Journal, 2011

CLINICAL EFFICACY IN SUBGROUPS

MADIT-CRT: SUBGROUP ANALYSIS Moss et al. NEJM, 2009

Differential clinical response:

- Gender
- > QRS duration
- Differential echo response:
 - Ischemic vs. non ischemic CMP

Variable	No. of Events/No. of Patients	Hazard Rat	io
Age			-
<65 yr	142/852		
≥65 yr	230/968		
Sex			
Male	294/1367		
Female	78/453		
NYHA class			
Ischemic I	53/265		
Ischemic II	186/734		
Nonischemic II	133/821		
QRS duration			
<150 msec	147/645		
≥150 msec	225/1175		
LVEF			
≤25%	101/646		
>25%	271/1174		
LVEDV			
≤240 ml	184/828		
>240 ml	184/969		
LVESV			
≤170 ml	190/835		
>170 ml	178/962		
All patients	372/1820	- + -	
	0	2 0.4 0.6 0.8 1.0	1.2 1.4 1.6
		CRT-ICD Better	ICD Only Better

MADIT-CRT: QRS MORPHOLOGY Zareba et al. Circulation, 2011

MADIT-CRT: QRS MORPHOLOGY Zareba et al. Circulation , 2011

areba et al Carulae Resyllentonization Therapy and DDD 10

6.0

7.0

5.0

RAFT *Tang et al. NEJM, 2010*

• 1798 ICM/NICM pts:

- > EF ≤ 30%
- > QRS ≥ 120 msec
- > NYHA II/III
- Randomization:

 - ↗ 1:1 ratio

• Outcome:

> HR=0.68 (p<0.001)</p>

RAFT: SUBGROUP ANALYSIS Tang et al. NEJM, 2010

Differences in clinical response:

- QRS duration
- > QRS morphology

Gender

Subgroup	No./Total No.		Hazard Ratio	(95% CI)			Interaction
Age							0.75
<65 yr	241/763		·				
≥65 yr	420/1035		-8-				
Sex							0.09
Male	573/1490						
Female	88/308						
NYHA class							0.91
П	446/1438		-8				
III	215/360						
Underlying heart disease							0.90
Ischemic	498/1201						
Nonischemic	163/597						
QRS duration							0.003
Intrinsic QRS <150 msec	248/627			22			
Intrinsic QRS ≥150 msec	359/1036						
Paced QRS ≥200 msec	54/135						
Left ventricular ejection fraction							0.05
<20%	175/431						
≥20%	486/1367						
QRS morphologic features	19						0.046
Right bundle-branch block	70/161						
Left bundle-branch block	449/1295						
NIVCD	88/207						
Paced	54/135		-				
Atrial rhythm							0.14
Permanent atrial fibrillation or flutter	104/229						
Sinus or atrial paced	557/1569						
Diabetes	•						0.22
Yes	258/606						
No	403/1192						
Hypertension	1						0.84
Yes	292/799						
No	369/999						
Estimated GFR	1						0.70
<60 ml/min/1.73 m ²	407/900						
≥60 ml/min/1.73 m²	250/882						
All patients							
	(0.1 0.2	0.5 1	2	5	10	
		ICD-CI	RT Better	ICD	Better		

2012 UPDATED GUIDELINES

CLASS I

1. CRT is indicated for patients who have LVEF less than or equal to 35%, sinus rhythm, LBBB with a QRS duration greater than or equal to 150 ms, and NYHA class II, (546,547) III, or ambulatory IV (542–545); symptoms on GDMT. (Level of Evidence: A for NYHA class III/IV; Level of Evidence: B for NYHA class II)

CLASS IIa

- CRT can be useful for patients who have LVEF less than or equal to 35%, sinus rhythm, LBBB with a QRS duration 120 to 149 ms, and NYHA class II, III, or ambulatory IV symptoms on GDMT (542–544,546–548). (Level of Evidence: B)
- 2. CRT can be useful for patients who have LVEF less than or equal to 35%, sinus rhythm, a non-LBBB pattern with a QRS duration greater than or equal to 150 ms, and NYHA class III/ ambulatory class IV symptoms on GDMT (542–544,547). (Level of Evidence: A)

PREDICTORS OF RESPONSE IN MADIT-CRT Goldenberg et al. Circulation, 2011

 Individual factors may contribute differently to the clinical response to CRT

 Echocardiographic response correlated with clinical response in MADIT-CRT

 Combined assessment of factors associated with a favorable echo response can identify patients who derive clinical benefit from CRT-D

STUDY DESIGN

STEP I: FACTORS ASSOCIATED WITH ECHO RESPONSE TO CRT-D*

	Incremental Response (SE)	P-value	Score
Female	-2.9% (1.0%)	0.003	2
Non-ischemic	-4.2% (0.9%)	<0.001	2
QRS ≥ 150 msec	-2.7% (0.9%)	0.003	2
LBBB	-3.4% (1.0%)	<0.001	2
Prior HF hospitalization	-1.9% (0.8%)	0.02	1
Baseline LAV <40 ml/m ²	-4.2% (1.1%)	<0.001	3
Baseline LVEDV ≥ 125 ml/m ²	-5.6% (1.0%)	<0.001	2

*Results are obtained from a best subsets analysis that included 25 prespecified clinical and echocardiographic candidate factors

STEP II: CONSTRUCTION OF RESPONSE SCORE

Response score range 0 to 14

 Pts categorized into approximate quartiles based on the distribution of the response scores:

- Group 1 (n=391): Q1 score 0-4
- ↗ Group 2 (n=401): Q2 score 5-6
- ↗ Group 4 (n=500): Q4 score 9-14

PERCENT CHANGE IN LVEDV BY RESPONSE GROUP

PERCENT CHANGE IN LVESV BY RESPONSE GROUP

CLINICAL BENEFIT BY SCORE GROUP

GROUP 3 (Q3 SCORE 7-8)

		CRI	Dfor		
Response Groups	Score	HR	95% Cl	Р	Trend
All patients (n=1761)	0-14	0.62	0.51-0.77	<0.001	NA
By response score quartile					
1 (n=391)	0-4	0.87	0.58-1.32	0.52	0.005
2 (n=401)	5 6	0.67	0.46-0.98	0.04	
3 (n=469)	7-8	0.64	0.43-0.97	0.03	
4 (n=500)‡	≥9	0.31	0.20-0.53	<0.001	
By individual response scores (per unit increment)		0.87§	0.81-0.96	<0.001	

LEAD POSITION IN MADIT-CRT Singh et al. Circulation 2011

LEAD POSITION IN MADIT-CRT Singh et al. Circulation 2011

Apical vs nonapical	1.55 (0.94–2.53)	0.083
Apical vs basal	2.20 (1.15-4.21)	0.018
Apical vs midventricular	1.38 (0.83–2.28)	0.214
Midventricular vs basal	1.60 (0.94–2.72)	0.086
Posterior vs anterior	1.11 (0.53–2.29)	0.787
Lateral vs anterior	0.99 (0.58-1.67)	0.985
Apical vs nonapical	2.91 (1.42–5.97)	0.004*
Apical vs basal	5.27 (1.67-16.66)	0.005*
Apical vs midventricular	2.45 (1.17–5.14)	0.018*
Midventricular vs basal	2.15 (0.74–6.27)	0.161
Posterior vs anterior	0.51 (0.11–2.47)	0.404
Lateral vs anterior	0.79 (0.33–1.93)	0.606

LEAD POSITION IN MADIT-CRT Limitations

- No difference in echo response (somewhat better in apical)
- 110 pts with apical lead position; 24 HF/death events
- Endpoint driven primarily by mortality (total=10; noncardiac =4)
- Within CRT-D difference, without comparison to ICD group

EFFECT ON ARRHYTHMIAS

REVERSE LV REMODELING AND SUBSEQUENT VENTRICULAR TACHYARRHYTHMIAS; *Barsehshet/Goldenberg et al. JACC 2011*

REVERSE LV REMODELING AND SUBSEQUENT VENTRICULAR TACHYARRHYTHMIAS; *Barsehshet/Goldenberg et al. JACC 2011*

REVERSE LV REMODELING AND SUBSEQUENT VENTRICULAR TACHYARRHYTHMIAS; *Barsehshet/Goldenberg et al. JACC 2011*

RECURRENT VENTRICULAR TACHYARRHYTHMIAS; Oullet/Goldenberg et al. JACC 2012

RECURRENT VENTRICULAR TACHYARRHYTHMIAS; *Oullet/Goldenberg et al. JACC 2012*

			By QRS Morphology					
	All Patients		LBBB Patients		Non-LBBB Patients			
Endpoint†	HR (95% CI)	p Value	HR (95% CI)	p Value	HR (95% CI)	p Value	p Value for differer	
First VTE (CRT-D vs. ICD)	0.71 (0.57-0.89)	0.003	0.58 (0.44-0.77)	<0.001	1.05 (0.71-1.54)	0.82	0.02	
Subsequent VTEs (CRT-D vs. ICD)	1.58 (0.99-2.53)	0.05	0.98 (0.61-1.60)	0.95	3.62 (1.59-8.26)	0.002	0.009	
60]								
92 50 -	Non-LBBB (105	5/218)						
onder			Treatment	Effect	HR	95% CI	p Value	
G. 40 -			CRT-D responder*	vs. ICD	0.54	0.42-0.68	3 <0.001	

CRT-D nonresponder† vs. ICD

1.45

117-1.80

< 0.001

LBBB (125/534)

Percent of non-

30

20

10

0

REVERSE LA REMODELING AND SUBSEQUENT ATRIAL TACHYARRHYTHMIAS; *Brenyo/Goldenberg et al. JACC 2011*

REVERSE LA REMODELING AND SUBSEQUENT ATRIAL TACHYARRHYTHMIAS; *Brenyo/Goldenberg et al. JACC 2011*

TAKE HOME MESSAGES: CRT IN MILD HF PTS

- Clinical benefit directly related to reverse remodeling of LV/LA
- No evidence for clinical benefit in non-LBBB pts
- No evidence for difference in efficacy within LBBB pts by QRS width
- Combined assessment can be used to identify enhanced responders
- Data regarding apical lead position require further validation

TAKE HOME MESSAGES: CRT IN MILD HF PTS

- Reverse remodeling effects on LV are directly related to reduced risk for ventricular tachyarrhythmias
- Reverse remodeling effects on LA are directly related to reduced risk for atrial tachyarrhythmias
- CRT may increase recurrent VA risk in non-LBBB patients (NYHA I/II)

Thank You