Treatment of Chronic Coronary Atherosclerosis

Professor Yoseph Rozenman The E. Wolfson Medical Center

CME course, Cesaria 2010

OUTLINE

Pathophysiology - Atherosclerosis – Ischemia Primary prevention – who should be treated Therapy - Lifestyle - Pharmacology Revascularization

Atherosclerosis Timeline

Decade

Decade

Adapted from Pepine CJ. Am J Cardiol. 1998;82(suppl 104).

Decade

The Glagov Concept Atherosclerosis progression and luminal narrowing

Similar luminal area despite marked variation in the volume of atheroma due to compensatory enlargement of the artery

Oxygen Supply myocardium vs other tissues

O₂ Delivery
 Coronary Blood Flow
 Hemoglobin
 Arterial O₂ saturation
 Myocardial (A-V) O₂ Difference

In resting condition coronary sinus blood is desaturated thus oxygen supply to the myocardium during conditions of increased demand is dependent on coronary blood flow.

Impact of diameter stenosis on resting and maximal coronary flow (flow reserve)

Mechanism of stress induced perfusion mismatch

Limited coronary flow reserve (CFR) in the territory supplied by the stenotic artery causing perfusion mismatch

Fractional Flow Reserve in Clinical Practice

Consequences of Acute Coronary Ischemia

- Typically causes ECG changes, myocardial dysfunction (diastolic and systolic) and symptoms of chest pain.
- Causes prolonged? dysfunction (stunning, occasional repetitive)
- Magnitude of effect modified by adaptive mechanisms (smart heart)
 - Hibernation (adaptation of mechanical function to flow limitation)
 - Preconditioning (protection from future ischemia by past ischemic episodes)

Unusual Presentations of Chronic Angina – Current Understanding

Diurnal variation of angina Coronary tone, preconditioning Angina disappears during walking Coronary tone, preconditioning Prolonged fatigue after exertion Myocardial stunning CHF symptoms without previous MI Hibernation (repetitive stunning)

OUTLINE

Pathophysiology - Atherosclerosis Ischemia Primary prevention – who should be treated > Therapy - Lifestyle - Pharmacology Revascularization

בן 55 אסימפטומטי עם סיפור משפחתי של מחלת לב (LDL= 125mg/dl) האם מומלץ להתחיל טיפול בסטטין?

- ן<mark>ס 1</mark>
- לא <mark>.2</mark>
- תלוי ברמת הסיכון (שנקבעת על פי גורמי הסיכון) . ובערך המטרה המתאים של LDL
 - 4. תלוי בתוצאת מבחן מאמץ / מיפוי (אקו) תחת דחק
 - .5 תלוי בנוכחות טרשת בכלי דם בדיקת הדמיה של טרשת
 - **CRP תלוי ברמת**.6

Assessing CHD Risk in Men - Framingham

Step 1: Age

at Points at (mg/dL)

<160

160-199

200-239

240-279

HDL-C (mg/dL)

≥60

50-59

40-49

<40

70-79

Years	Points
20-34	-9
35-39	-4
40-44	0
45-49	3
50-54	6
55-59	8
60-64	10
65-69	11
70-74	12
75-79	13

Step 2: Total Cholesterol

Step 3: HDL-Cholesterol

oints at

0

4

7

Points

-1

0

1

2

Age 20-39 Age 40-49

Step 4: Systolic Blood Pressure						
Systolic BP (mm Hg)	Points Points if Untreated if Treated					
<120	0	0				
120-129	0	1				
130-139	1	2				
140-159	1	2				
≥160	2	3				

Step 6: Adding Up the Points

Age	
Total cholesterol	
HDL-cholesterol	
Systolic blood pressure	
Smoking status	
Point total	

	Risk			
	<0	<1%	11	8%
	0	1%	12	10%
Points at Points	1	1%	13	12%
	2	1%	14	16%
Ige 50-59 Age 60-69 Age	3	1%	15	20%
0 0 0	4	1%	16	25%
	5	2%	≥17	≥30%
$\frac{2}{3}$ 1 0	6	2%		
4 2 1	7	3%		
	8	4%		
ing Status	9	5%		
ing Status	10	6%		
Points at Points at I Points at	Points at Points	;		

Note: Risk estimates were derived from the experience of the Framingham Heart Study, a predominantly Caucasian population in Massachusetts, USA.

Points at

0

Step 5: Sm

at

Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. *JAMA*. 2001;285:2486-2497.

Risk subgroups

- LOW RISK designated as <0.6% CHD risk per year (<6% in 10 years)</p>
- INTERMEDIATE RISK designated as a CHD risk of 0.6%-2.0% per year (6-20% over 10 years)
- HIGH RISK designated as a CHD risk of >2% per year (20% in 10 years) (CHD risk equivalent), including those with CVD, diabetes, and PAD

Target LDL and need for statin is determined by level of risk

How Good Is NCEP III At Predicting MI in young?

222 patients with 1st acute MI, no prior CAD men <55 y/o (75%), women <65 (25%), no DM

High Risk Intermediate Risk Low Risk

Akosah Et al, JACC 2003:41 1475-9

First Presentation is Frequently Sudden Death might be preventable with early therapy

(Adapted from Levy et al.) Levy D et al in Textbook of Cardiovascular Medicine, 1998.

What should be done? Who should be started on statin RX

Everyone > 50 years old
Only those at high risk for event
<u>Risk predictors:</u>
Calcium Score (CAC)
Carotid Intima-Media Thickness (CIMT)
C Reactive Protein (CRP)

How Is the Coronary Artery Calcium (CAC) Score Calculated?

Peak density and area in each location, in each coronary artery, are measured.

Hn x-factor (Agatston Scoring)		
130-199	1	
200-299	2	
300-399	3	
>400	4	

CAC score = total of area and density of each calcified lesion

Images courtesy of Alan B. Zelinger, MD.

Coronary Artery Calcium (CAC) Score Can Predict Risk-Unadjusted All-Cause Mortality

Shaw LJ, et al. *Radiology*. 2003;228:826-833.

What is Carotid Intima–Media Thickness (CIMT)?

What is Carotid Intima–Media Thickness (CIMT)?

Carotid Disease as a Marker of Cardiovascular Risk: MI or Stroke

O'Leary, et al. N Engl J Med. 1999;340:14-22.

CVD Risk in the Women's Health Study According to Quintiles of CRP

Probability of Event-Free Survival

Ridker PM et al. *N Engl J Med* 2002; 347: 1557-1565. Copyright 2002 Massachusetts Medical Society. All rights reserved.

Predictive utility of a screening test

When making decisions about the predictive utility of new tests, the focus is not on relative risks.

Rather, the best measure of the additional utility of a new test is to be found in comparing the areas under receiver operating characteristic curves (AUC).

ROC Curve, its AUC and Corresponding Odds Ratio

Based on: Pepe e. al. Am J Epidemiol 2004; 159:882-890.

1.0

MESA Study – 6,814 Patients: 3.5 year follow-up

Risk of Coronary Events Associated with Increasing CAC after Adjustment for Standard Risk Factors

Fully adjusted – Detrano et al– *NEJM 2008*

Association for the Eradication of Heart Attacks

6: For stroke prevention, follow existing guidelines

Most Myocardial Infarctions Are Caused by Low-Grade Stenoses:

Failure rate of primary and secondary prevention is high even with statin therapy

Prediction and Prevention: The Vulnerable Plaque

Project Goal: Prevent heart attacks

Detection of Vulnerable Plaque Catheter Base and Non-invasive techniques

 Prediction should be reliable enough to justify invasive therapy (stent)
 Otherwise, patients with any plaques, should be on statins

Soft Plaque (CTA): A marker of vulnerability?

LAD: with narrowing

RCA: with minimal narrowing

OUTLINE

Pathophysiology - Atherosclerosis Ischemia Primary prevention – who should be treated Therapy - Lifestyle - Pharmacology - Revascularization

Aims of Treatment

Improve prognosis – Prevention of death and myocardial infarction

Improve quality of life
 – Prevent / minimize symptomatic ischemic events

Aims and Modes of Treatment From the Guidelines

Improve prognosis

- "Lifestyle changes and drug treatment play vital roles in modifying the atherosclerotic disease process and 'stabilising' coronary plaques ***"
- "In certain circumstances, such as in patients with severe lesions in coronary arteries supplying a large area of jeopardised myocardium, revascularization offers additional opportunities to improve prognosis by improving existing perfusion or providing alternative routes of perfusion"

ESC guidelines on the management of stable AP - 2006

Aims and Modes of Treatment From the Guidelines

Improve quality of life

– "Lifestyle changes, drugs, and revascularization all have a role to play in minimising or eradicating symptoms of angina, although not necessarily all in the same patient"

SPECIAL ARTICLE

Explaining the Decrease in U.S. Deaths from Coronary Disease, 1980–2000

Earl S. Ford, M.D., M.P.H., Umed A. Ajani, M.B., B.S., M.P.H., Janet B. Croft, Ph.D., Julia A. Critchley, D.Phil., M.Sc., Darwin R. Labarthe, M.D., M.P.H., Ph.D., Thomas E. Kottke, M.D., Wayne H. Giles, M.D., M.S., and Simon Capewell, M.D.

From 1980 to 2000, the age-adjusted mortality rate from CAD fell (per 100,000 population):

- Men: from 542.9 to 266.8 (51%)
- Women: from 263.3 to 134.4 (49%)

A previously validated model was used to estimate the roles of specific cardiac treatments and changes in risk factors in this decline

N Engl J Med 2007;356:2388-98.

The NEW ENGLAND JOURNAL of MEDICINE

Sequence Variations in PCSK9*, Low LDL, and Protection against Coronary Heart Disease

Jonathan C. Cohen, Ph.D., Eric Boerwinkle, Ph.D., Thomas H. Mosley Jr., Ph.D. and Helen H. Hobbs, M.D.

*proprotein convertase subtilisin/kexin type 9 serine protease gene

N Engl J Med Volume 354;12:1264-1272, March 23, 2006

Background: PCSK9 mutation and its effect on LDL-C level

Cohen, J. et al. N Engl J Med 2006;354:1264-1272

- PCSK9 is responsible for degradation of LDL receptors in liver cells
- Various genetic variations are present in blacks (2%) and whites (3.2%)
 - Subjects have increased LDL receptor density (statin like effect)
 - associated with a 20-40 percent reduction in mean LDL cholesterol

Clinical significance was determined in 15792 participants of ARIC: a prospective study of atherosclerosis in the community
 Data represents 15 years of follow-up

Distribution of Plasma LDL-C and Incidence of CHD among 3363 Black Participants in the Study Carriers and noncarriers of PCSK9 nonsense mutation

Plasma LDL-C 28% lower in carriers

Cohen, J. et al. N Engl J Med 2006;354:1264-1272

Relation Between Reduction of LDL-C and Cardiovascular Risk Reduction Statins as compared to PCSK9 mutation

Atherosclerosis Progression Implication for therapy

- Atherosclerosis is a slowly progressive disease
 - Disease starts at childhood but becomes clinically evident decades later
- It takes years until the maximal benefit of therapy is evident
 - 5 years (F/U time in many statin trials) are not enough to obtain the full benefit from therapy

ASTEROID: Aggressive statin therapy can induce regression of atherosclerosis

Mean (on treatment) LDL-C (mg/dL)

Ref: Nissen S et al. JAMA 2006; 295: e-publication ahead of print

Treating to New Targets (TNT) trial: Rationale

LDL-C, mg/dl

Modified from Kastelein JJP. Atherosclerosis. 1999;143(suppl 1):S17-S21

TNT: Treatment effects on primary outcome

LaRosa JC et al. N Engl J Med. 2005;352.

Major CV Events Across Quintiles of Achieved LDL

LaRosa JC. AHA. 2005

JUPITER Trial: LDL and event* reduction

*Primary Trial Endpoint : MI, Stroke, UA/Revascularization, CV Death

Ridker et al NEJM 2008

Role of RAAS Modulation in CAD Implications from recent clinical trials

Benefit of ACE inhibition in CAD

ACEI trials in CAD without HF: Primary outcomes

EUROPA, HOPE, PEACE, QUIET: Totality of trial evidence

	Event	rate (%)		
	ACEI	Placebo	Favors ACEI Favors placebo	P
All-cause death	7.5	8.9	0.86	0.0004
MI	6.4	7.7	0.86	0.0004
Stroke	2.1	2.7	0.77	0.0004
Revascularization	15.5	16.3	•• 0.93	0.025
		0.5	0.75 1 1.25 Odds ratio	

Pepine CJ, Probstfield JL. *Vasc Bio Clin Pract.* CME Monograph; UF College of Medicine. 2004;6(3). ACE inhibitors: ESC guidelines on the management of stable AP - 2006

Class I

ACE-inhibitor therapy in patients with coincident indications for ACE-inhibition, such as hypertension, heart failure, LV dysfunction, prior MI with LV dysfunction, or diabetes

level of evidence A

Class IIa

- ACE-inhibitor therapy in all patients with angina and proven coronary disease
 - level of evidence B

Role of ARB's: The ONTARGET Program

*Planned. Actual=25,620; [†]Planned. Actual=5926. The ONTARGET/TRANSCEND Investigators. *Am Heart J*. 2004;148:52-61.

The ONTARGET Trial

Inclusion Criteria

- ♦ Age ≥55 years
- At high risk of developing a CVD event, with a history of
 - Coronary artery disease
 - Peripheral arterial occlusive disease (PAOD)
 - Cerebrovascular event
 - Diabetes mellitus with end organ disease
- Intolerant to ACE inhibitors (TRANSCEND)

Criteria similar to HOPE trial

The ONTARGET/TRANSCEND Investigators. *Am Heart J*. 2004;148:52-61.

ONTARGET Change in BP (mmHg)

Ramipril Telmisartan Combination

Systolic	-6.0	-6.9	-8.4
Diastolic	-4.6	-5.2	-6.0

ONTARGET Time to Primary Outcome

NEJM 2008: 358; 1547-1559

Telmisartan vs. Placebo in ACE intolerant patients

ESC: SEP 2008

ONTARGET

Implications

- Telmisartan is as effective as ramipril, with a slightly better tolerability.
- Combination therapy is not superior to ramipril, and has increased side effects.
- Telmisartan is not better than placebo in ACE intolerant patients

How can Telmisartan be as effective as Ramipril (HOPE population) and at the same time not be better than placebo????

Antiplatelet Therapy

Antiplatelet therapy – beyond aspirin

- Aspirin is a weak antiplatelet agent
- Role of aspirin in treatment in patients with ACS and in stable CAD is proven beyond doubt
- Addition of clopidogrel to aspirin is helpful to improve outcome in ACS
- Is there benefit to combination therapy (aspirin and clopidogrel) in stable CAD?

Clopidogrel for High Atherothrombotic Risk and Ischemic Stabilization, Management and Avoidance (CHARISMA)

Study Design

* MI (fatal or non-fatal), stroke (fatal or non-fatal), or cardiovascular death; event-driven trial

Bhatt DL, Topol EJ, et al. Am Heart J 2004; 148: 263–268.

Inclusion criteria

<u>Must</u> include

Signed Written Informed Consent

Patients aged <u>></u>45 years

At least one of four criteria

- Documented cerebrovascular disease
- 2. Documented coronary disease
- 3. Documented symptomatic PAD

4.

2 major or 1 major and 2 minor or 3 minor risk factors

Major Risk Factors

- Type I or Type II diabetes
- Diabetic nephropathy
- Ankle Brachial Index <0.9
- Asymptomatic carotid stenosis > 70%
- Presence of at least one carotid plaque

Minor Risk Factors

- SBP ≥150 mm Hg (despite therapy)
- Hypercholesterolemia
- Current smoking
 >15 cigarettes/day
- Male ≥65 years
 or female ≥70 years

Overall Population: Primary Efficacy Outcome (MI, Stroke, or CV Death)[†]

[†] First Occurrence of MI (fatal or non-fatal), stroke (fatal or non-fatal), or cardiovascular death
*All patients received ASA 75-162mg/day
Median follow-up was 28 months
Bhatt DL, Fox KA, Hacke W, et al. NEJM 2006 – In press

Primary Efficacy Results (MI/Stroke/CV Death)* by Category of Inclusion Criteria

* First Occurrence of MI (fatal or not), Stroke (fatal or not), or CV Death RF= Risk Factors, AT= Atherothrombosis

HARISMA

Bhatt DL. Oral presentation at ACC 2006.

Multiple Risk Factor Population: Secondary Efficacy Results

	Clopidogrel	Placebo		
Endpoint* – N (%)	(n=1659)	+ ASA (n=1625)	+ ASA RR (95% CI)	p value
Principal Secondary Endpoint [†]	224 (13.5)	216 (13.3)	1.01 (0.84, 1.22)	0.88
All Cause Death	89 (5.4)	62 (3.8)	1.41 (1.02, 1.95)	0.04
Cardiovascular Death	64 (3.9)	36 (2.2)	1.74 (1.16, 2.62)	0.01
Myocardial Infarction	40 (2.4)	33 (2.0)	1.19 (0.75, 1.89)	0.45
Ischemic Stroke	27 (1.6)	29 (1.8)	0.91 (0.54, 1.54)	0.73
Stroke	35 (2.1)	36 (2.2)	0.95 (0.60, 1.52)	0.84
Hospitalization [‡]	140 (8.4)	147 (9.0)	0.93 (0.74, 1.18)	0.55

*Intention to treat analysis

[†]First occurrence of MI (fatal or not), stroke (fatal or not), cardiovascular death (including hemorrhagic death), or hospitalization[‡] [‡]For UA, TIA, or revascularization

CHARISMA – post hoc subgroup analysis cardiovascular death, MI, or stroke

Validity of subgroup analysis in a negative trial?

Patients with CAD Without prior MI

CHARISMA – time dependence of daily hazard

Recommendations for pharmacological therapy to improve prognosis

Class I

- Aspirin 75 mg daily in all patients without specific contraindications (ie active GI bleeding, aspirin allergy or previous aspirin intolerance) (level of evidence A)
- Statin therapy for all patients with coronary disease (level of evidence A)
- ACE-inhibitor therapy in patients with coincident indications for ACE-inhibition, such as hypertension, heart failure, LV dysfunction, prior MI with LV dysfunction, or diabetes (level of evidence A)
 - Oral beta blocker therapy in patients post-MI or with heart failure (level of evidence A)

ESC guidelines on the management of stable AP - 2006

Recommendations for pharmacological therapy to improve prognosis

Class IIa

- ACE-inhibitor therapy in all patients with angina and proven coronary disease (level of evidence B)
- Clopidogrel as an alternative antiplatelet agent in patients with stable angina who cannot take aspirin eg Aspirin allergic (level of evidence B)
- High-dose statin therapy in high risk (>2% annual CV mortality) patients with proven coronary disease (level of evidence B)

Class IIb

Fibrate therapy in patients with low HDL and high triglycerides who have diabetes or the metabolic syndrome (level of evidence B)

ESC guidelines on the management of stable AP - 2006

pharmacological therapy to improve symptoms and/or reduce ischaemia

Beta Blockers

- Nitrates
 - Short, long acting
- Ca Channel Blockers
 - Dihydropyridines, Non-dihydropyridines
- Others
 - K channel opener Nicorandil
 - Sinus node inhibitor Ivabradine
 - Metabolic modifiers Trimetazidine, Ranolazine

OUTLINE

Pathophysiology - Atherosclerosis Ischemia Primary prevention – who should be treated Therapy - Lifestyle - Pharmacology - Revascularization

<u>C</u>linical Outcomes Utilizing

Revascularization and

Aggressive Guideline-Driven

Drug Evaluation

PCI + Optimal Medical Therapy will be Superior to Optimal Medical Therapy Alone

Optimal Medical Therapy

Pharmacologic

- Anti-platelet: aspirin; clopidogrel in accordance with established practice standards
- Statin: simvastatin ± ezetimibe or ER niacin
- ACE Inhibitor or ARB: lisinopril or losartan
- Beta-blocker: long-acting metoprolol
- Calcium channel blocker: amlodipine
- Nitrate: isosorbide 5-mononitrate

Lifestyle

- Smoking cessation
- Exercise program
- Nutrition counseling
- Weight control

Applied to Both Arms by Protocol and Case-Managed

Risk Factor Goals

COURAGE

Variable	Goal		
Smoking	Cessation		
Total Dietary Fat / Saturated Fat	<30% calories / <7% calories		
Dietary Cholesterol	<200 mg/day		
LDL cholesterol (primary goal)	60-85 mg/dL		
HDL cholesterol (secondary goal)	>40 mg/dL		
Triglyceride (secondary goal)	<150 mg/dL		
Physical Activity	30-45 min. moderate intensity 5X/week		
Body Weight by Body Mass index	Initial BMIWeight Loss Goal25-27.5BMI <25		
Blood Pressure	<130/85 mmHg		
Diabetes	HbAlc <7.0%		

Long-Term Improvement in Treatment COURAGE **Targets (Group Median ± SE Data)** •

Treatment Targets	Baseline		60 Months	
	PCI +OMT	ΟΜΤ	PCI +OMT	ΟΜΤ
SBP	131 ± 0.77	130 ± 0.66	124 ± 0.81	122 ± 0.92
DBP	74 ± 0.33	74 ± 0.33	70 ± 0.81	70 ± 0.65
Total Cholesterol mg/dL	172 ± 1.37	177 ± 1.41	143 ± 1.74	140 ± 1.64
LDL mg/dL	100 ± 1.17	102 ± 1.22	71 ± 1.33	72 ± 1.21
HDL mg/dL	39 ± 0.39	39 ± 0.37	41 ± 0.67	41 ± 0.75
TG mg/dL	143 ± 2.96	149 ± 3.03	123 ± 4.13	131 ± 4.70
BMI Kg/M ²	28.7 ± 0.18	28.9 ± 0.17	29.2 ± 0.34	29.5 ± 0.31
Moderate Activity (5x/week)	25%	25%	42%	36%

Survival Free of Death from Any Cause and Myocardial Infarction

Nuclear Substudy (n=314/2,287)

<u>Hypothesis:</u> Reduction in Ischemia will be greater for patients randomized to PCI+OMT than for those randomized to OMT

Serial Rest/Stress Myocardial Perfusion SPECT (MPS) To compare patient management strategy for ischemia reduction

Quantification of extent and severity of ischemia by nuclear perfusion study: total perfusion deficit (TPD)

% ischemic myocardium: (stress TPD-rest TPD)

- > < 5%: minimal ("no ischemia")
 > 5.0%-9.9%: mild
- \geq 10%: moderate-to-severe

*threshold exceeds test repeatability

Slomka et al. J Nucl Cardiol 2005;12:66-77

% with ischemia reduction ≥5% myocardium

(n=105 moderate-to-severe pre-Rx ischemia)

Rates of Death or MI by Residual Ischemia

P=0.002

COURAGE Trial

Fractional Flow Reserve in Clinical Practice

Diameter Stenosis versus FFR

Diameter stenosis is the main determinant of coronary stenosis
 However
 Resistance is also influenced by lesion length and the 3D morphology of the stenosis

 Anatomical assessment is not accurate enough to determine physiological significance
 Coronary angiography provides only the anatomical data

FAME study: Baseline Characteristics (2)

FAME

	ANGIO-group N=496	FFR-group N=509	P-value
# indicated lesions per patient	2.7±0.9	2.8±1.0	0.34
Reference diameter (mm) % stenosis severity MLD (mm)	2.5±0.6 61±17 1.0±0.4	2.5±0.7 60±18 1.0±0.5	0.81 0.24 0.35
50-70% narrowing, No (%)	550 (41)	624 (44)	-
70-90% narrowing, No (%)	553 (41)	530 (37)	-
90-99% narrowing, No (%)	207 (15)	202(14)	-
Total occlusion, No (%)	40 (3)	58 (4)	-
Patients with ≥1 total occlusion (%)	7.5	10.6	0.08

FAME study: Procedural Results (1)

	ANGIO-group N=496	FFR-group N=509	P-value
# indicated lesions per patient	2.7 ± 0.9	2.8 ± 1.0	0.34
FFR results			
esions succesfully measured, No (%)	-	1329 (98%)	-
Lesions with FFR ≤ 0.80 ,No (%)	-	874 (63%)	-
Lesions with FFR > 0.80 ,No (%)	-	513 (37%)	-

FAME study: Procedural Results (1)

	ANGIO-group N=496	FFR-group N=509	P-value
# indicated lesions per patient	2.7 ± 0.9	2.8 ± 1.0	0.34
FFR results			
Lesions succesfully measured, No (%)	-	1329 (98%)	-
Lesions with FFR ≤ 0.80 ,No (%)	-	874 (63%)	-
(%) No. (%) Lesions with FFR	-	513 (37%)	-
stents per patient	2.7 ± 1.2	1.9 ± 1.3	<0.001
Lesions succesfully stented (%)	92%	94%	-
DES, total, No	1359	980	-

FAME study: Event-free Survival

FAME

Impact of revascularization on outcome - controversial

Anatomic obstruction with documented ischemic physiology Long term outcome is better with PCI compared to OMT **COURAGE nuclear substudy, FAME** Anatomic obstruction without documented ischemic physiology Long term outcome is worse with PCI compared to OMT **DEFER, FAME**

תודה רבה