Non-Pharmacologic Treatment in Heart Failure

Zaza Iakobishvili, MD, PhD Department of Cardiology Rabin Medical Center

Device-based treatment of heart failure

Function of device

Monitor heart failure condition

Prevent or treat rhythm disturbances

Improve mechanical efficiency of the heart

Cardiac replacement therapy

Examples

Implantable hemodynamic monitors, home scales, home monitoring systems

Pacemakers for bradycardia, ICD, LifeWest Wearable AED (LIFECOR, Inc, PA)

Left ventricular or multisite pacing, Biventricular pacing, CorCap (Accorn, MN) Myosplint (Myocor, MN) LVAD, BiVAD, TAH

Adapted from Boehmer, Am J Cardiol, 2003

Device-based treatment of heart failure

Function of device

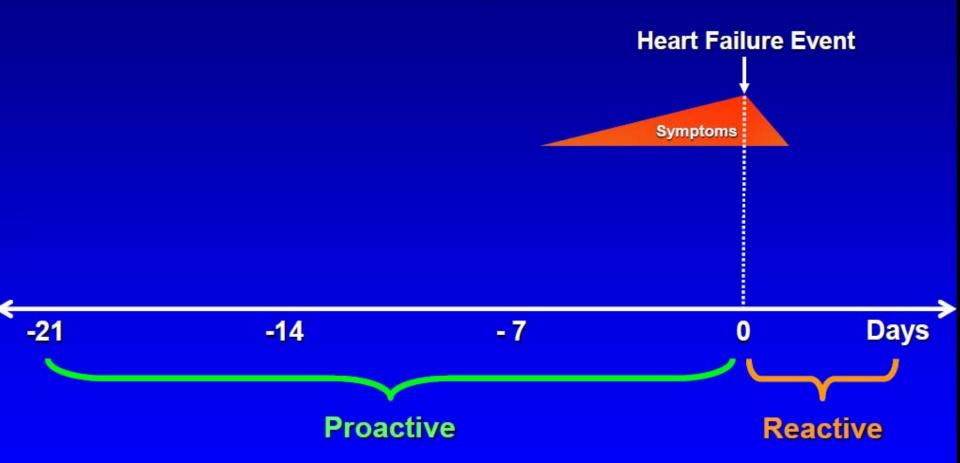
Monitor heart failure condition

Prevent or treat rhythm disturbances

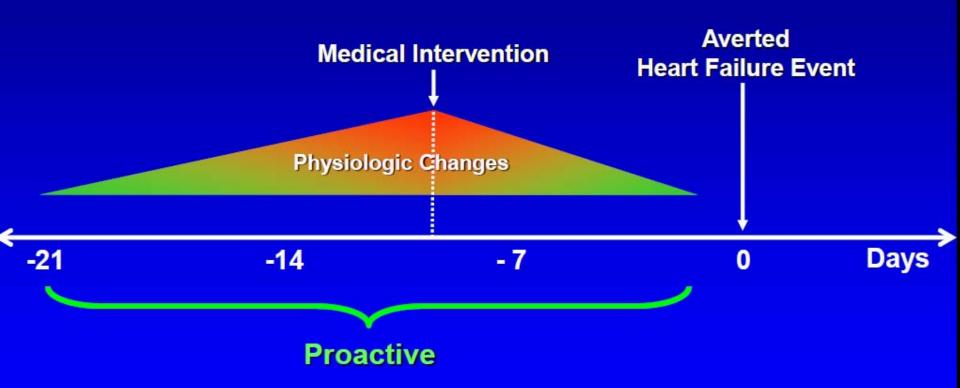
Improve mechanical efficiency of the heart

Cardiac replacement therapy

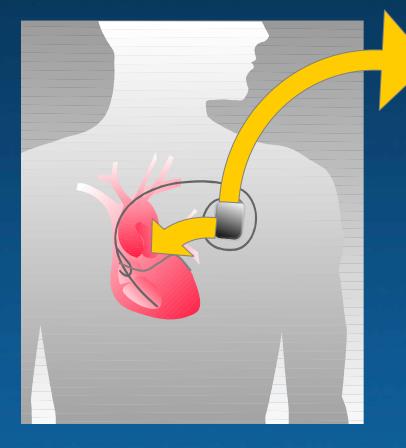
Examples


Implantable hemodynamic monitors, home scales, home monitoring systems

Pacemakers for bradycardia, ICD, LifeWest Wearable AED (LIFECOR, Inc, PA)


Left ventricular or multisite pacing, Biventricular pacing, CorCap (Accorn, MN) Myosplint (Myocor, MN) LVAD, BiVAD, TAH

Adapted from Boehmer, Am J Cardiol, 2003


Physiological Premise of Implantable HF Device Diagnostics (1)

Physiological Premise of Implantable HF Device Diagnostics (2)

Devices in heart failure

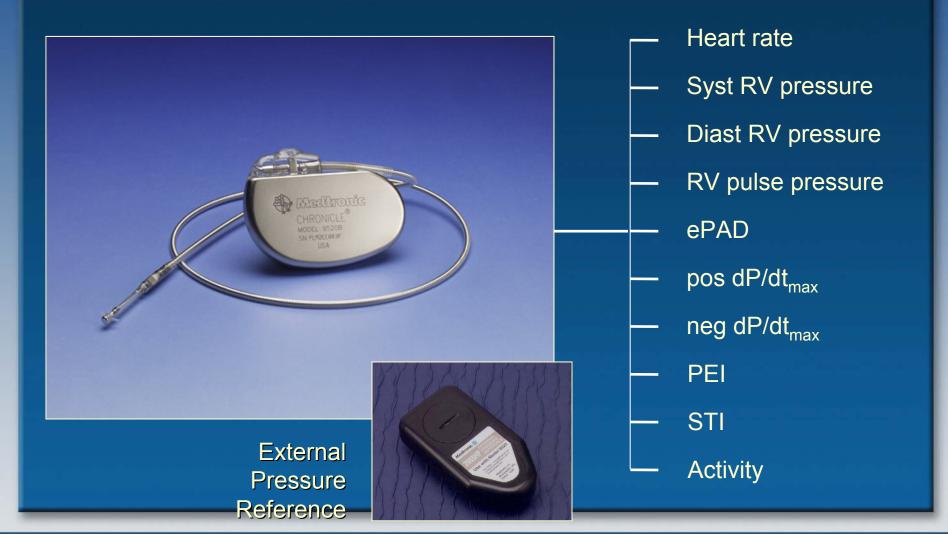
Diagnostic capabilities

- Arrhythmia monitoring
- Heart rate
- Percent pacing
- Physical activity
- Heart rate variability
- Intrathoracic impedance
- RV pressures

Implantable Hemodynamic Monitors

RV Pressure Sensors

LV Pressure Sensor

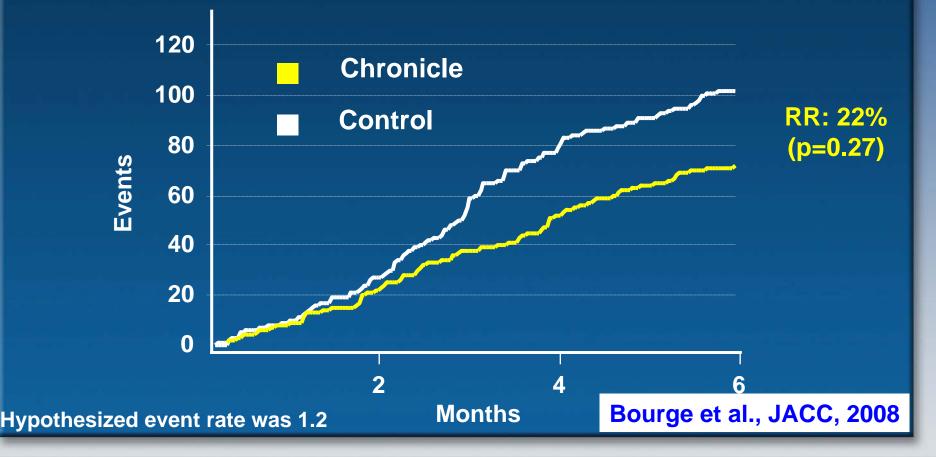


LA Pressure Sensor

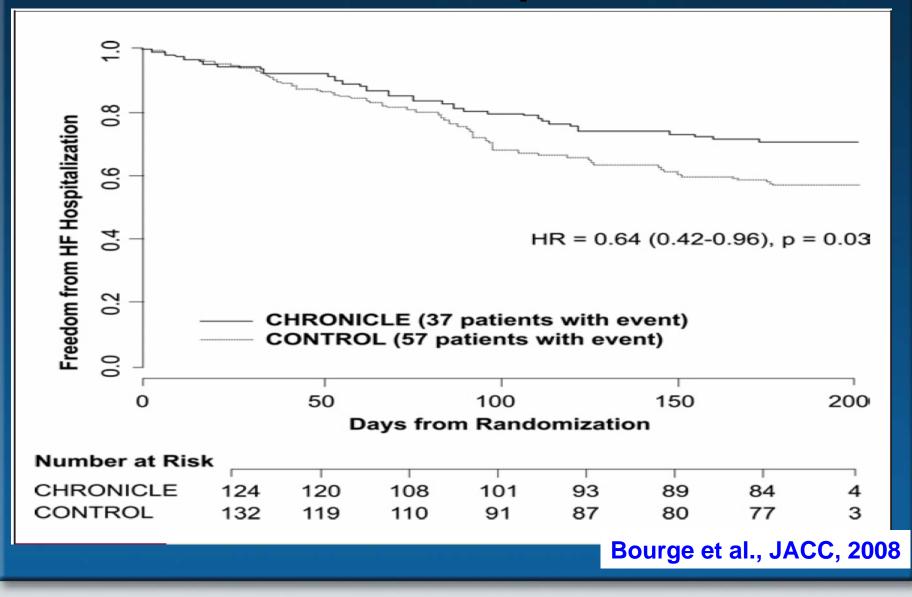
PA Pressure Sensors

The Chronicle[®]

Implantable continuous hemodynamic monitor (ICHM)


Randomized Controlled Trial of an Implantable Continuous Hemodynamic Monitor in Patients With Advanced Heart Failure The COMPASS-HF Study

Primary Effectiveness end-point - the Chronicle group would have a 30% lower rate of combined HF-related events (hospitalizations, emergency department and urgent clinic visits requiring intravenous therapy) compared with the control group.


Bourge et al., JACC, 2008

COMPASS-HF

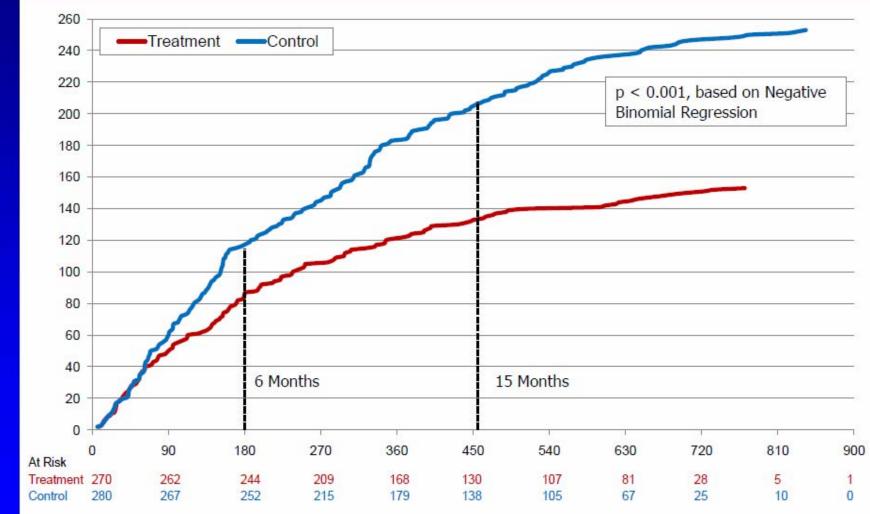
HF-related Hospitalization Cumulative Events

Reduction in relative risk of a first heart failure related hospitalization

Conclusions

In patients with moderate to severe HF, the addition of an ICHM to optimal medical management did not significantly reduce the rate of all HF-related events.

Additional trials will be necessary to establish clinical benefit of ICHM-guided care in this patient population.



Primary Results of the CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA Class III Heart Failure Patients (CHAMPION) Trial

William T. Abraham, MD and Philip B. Adamson, MD On behalf of the CHAMPION Trial Committees and Study Group

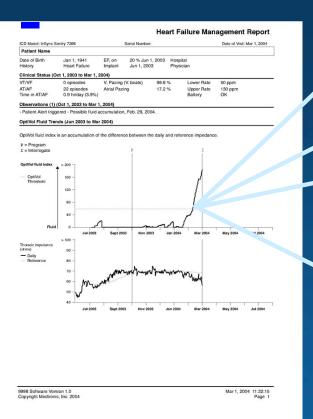
Presented at ESC-HF 2010

Cumulative HF Hospitalizations Over Entire Randomized Follow-Up Period

Days from Implant

Intrathoracic impedance

Dryer lungs



Wetter lungs

Intrathoracic impedance

Fluid Accumulation Notification Options

Observations with Trends

- Device audible alert
- SentryCheck[™]

Patient look indicator

European Heart Journal (2007) 28, 1835–1840 doi:10.1093/eurheartj/ehl506

Clinical research Heart failure/cardiomyopathy

Clinical utility of intrathoracic impedance monitoring to alert patients with an implanted device of deteriorating chronic heart failure

- 640 pts with heart failure elligible for CRT-D (InSync Sentry®, Medtronic Inc, USA) implantation were enrolled in 42 countries.
- Lack of FU reports in 267 pts.
- Finally 373 pt files were analyzed.

Main Findings

- The device alert detected HF deterioration with an adjusted sensitivity and an adjusted PPV of 60% each.
- Failure of the alert algorithm to detect clinical HF deterioration was in 55% of the cases associated with an increase of the fluid index that was yet below the programmable alert threshold.
- Half of the false-positive alerts were related to other clinical findings or therapeutic interventions.

Device-based treatment of heart failure

Function of device

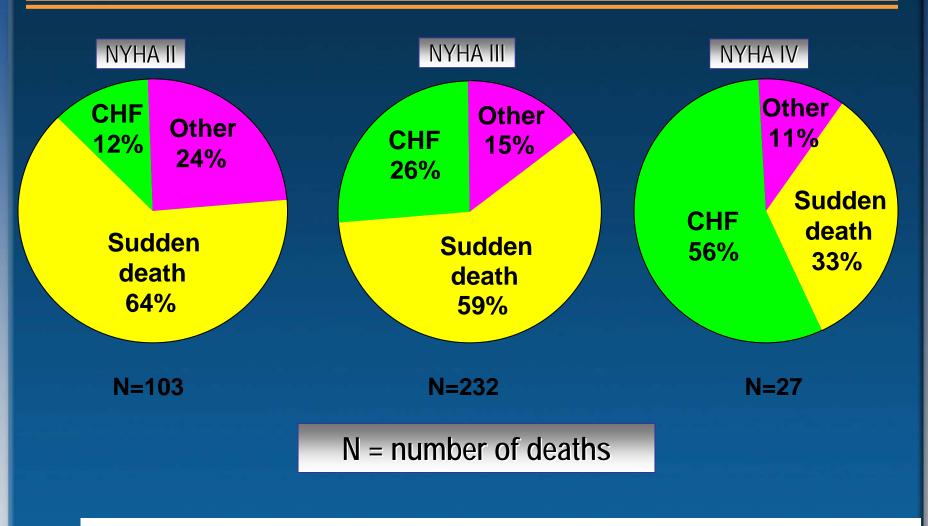
Examples

Monitor heart failure condition

Prevent or treat rhythm disturbances

Improve mechanical efficiency of the heart

Cardiac replacement therapy

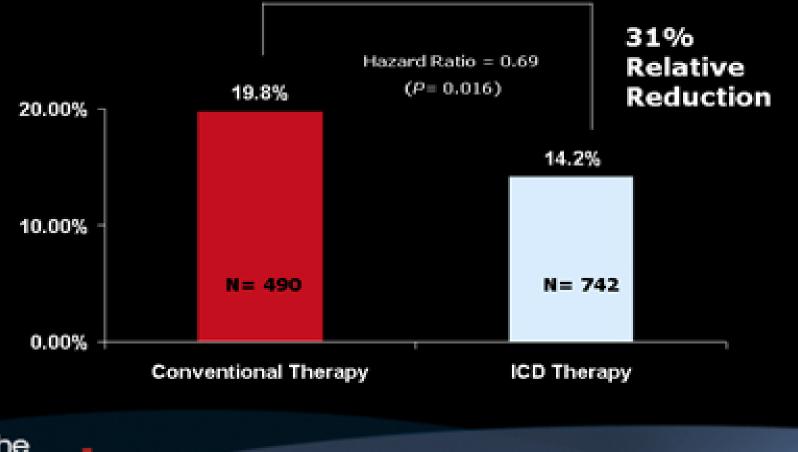

Implantable hemodynamic monitors, home scales, home monitoring systems

Pacemakers for bradycardia, ICD, LifeWest Wearable AED (LIFECOR, Inc, PA)

Left ventricular or multisite pacing, Biventricular pacing, CorCap (Accorn, MN) Myosplint (Myocor, MN) LVAD, BiVAD, TAH

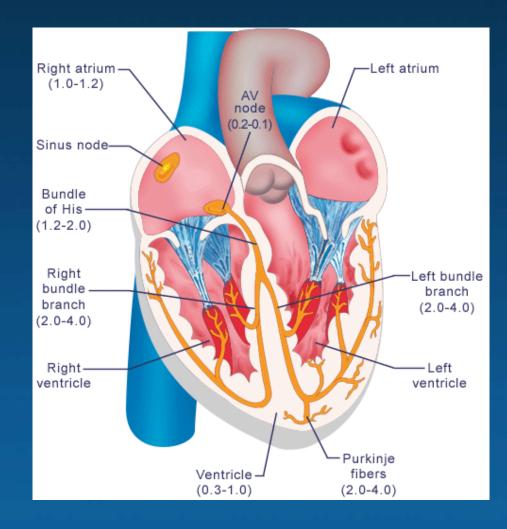
Adapted from Boehmer, Am J Cardiol, 2003

Severity of Heart Failure and Mode of Death


MERIT-HF Study Group. Effect of Metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL randomized intervention trial in congestive heart failure (MERIT-HF). LANCET. 1999;353:2001-07.

SCD-HeFT Mortality Rate Overall Results

Bardy GH. N Engl J Med. 2005;352:225-237.


MADIT II: Multicenter Automatic Defibrillator Implantation Trial II

Moss AJ. N Engl J Med. 2002;346:877-883

Contraction Depends on Activation

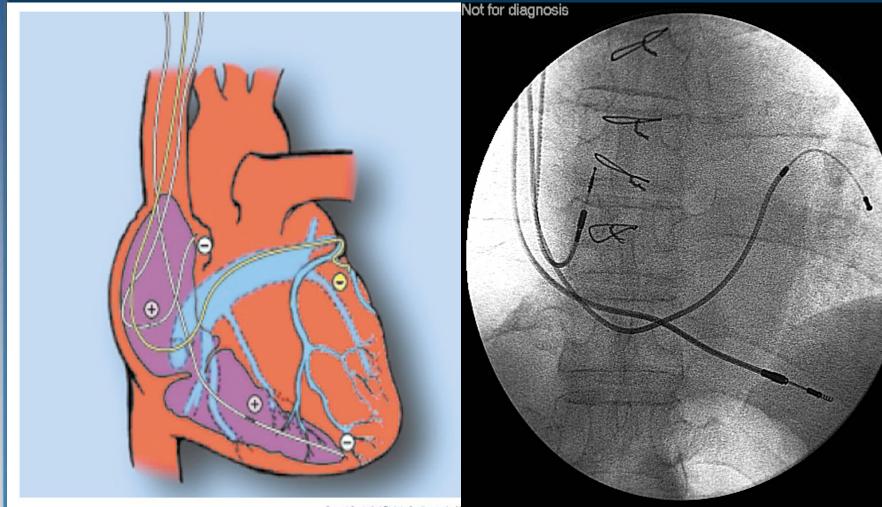
Shrier http://www.mmip.mcgill.ca/unit2/shrier/lect34electrocardiogram.htm

HF1 ASW

Healthy heart

Heart failure heart

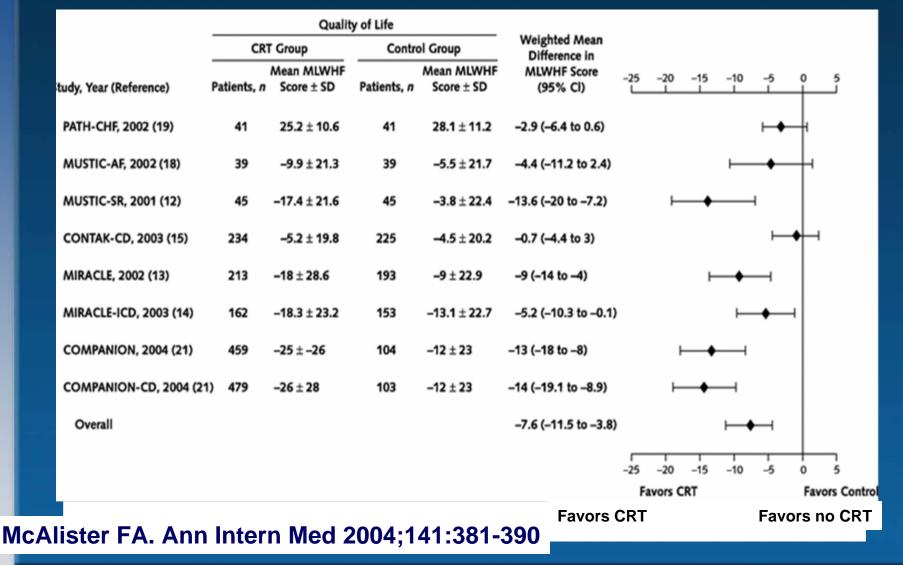
Normal vs Abnormal Contraction Mechanical Dyssynchrony with IVCD Normal Dilated Cardiomyopathy

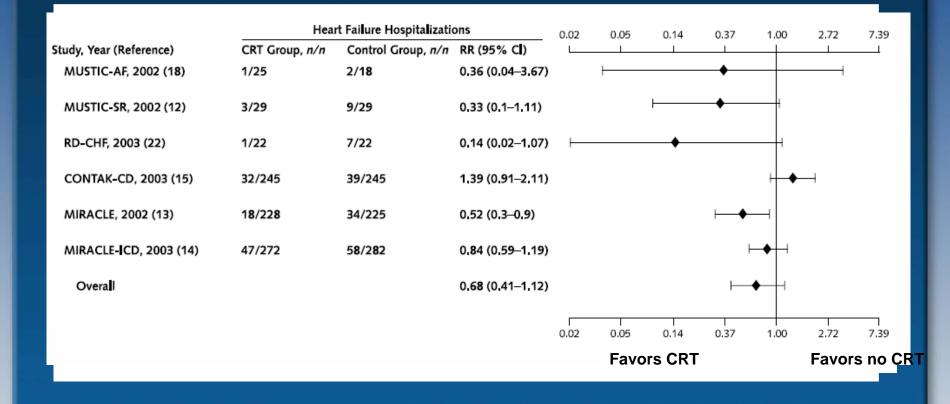


Dysynchrony - Consequences

- Abnormal septal motion¹
- Reduced dP/dt^{3,4}
- Reduced pulse pressure⁴
- Lower ejection fraction⁴
- Reduced diastolic filling ^{1,2,4}
- Mitral regurgitation^{1,2,4}

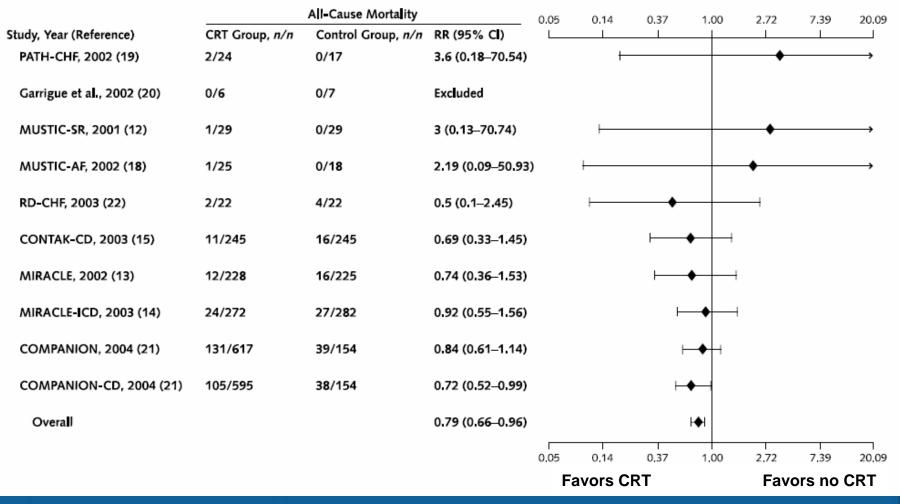
Grines CL, Bashore TM, Boudoulas H, et al. *Circulation* 1989;79:845-853.
Xiao, HB, Lee CH, Gibson DG. *Br Heart J* 1991;66:443-447.
Xiao HB, Brecker SJD, Gibson DG. *Br Heart J* 1992;68:403-407.
Yu C-M, Chau E, Sanderson JE, et al. *Circulation*. 2002;105:438-445.


Biventricular pacemaker leads


CRT Background

- CRT has been shown to be consistently associated with:
 - Reductions in LV size and volume
 - Increased Stroke Volume
 - Increased Ejection Fraction
 - Reduced Mitral Regurgitation
 - Improved exercise capacity
 - Improved QOL and functional capacity

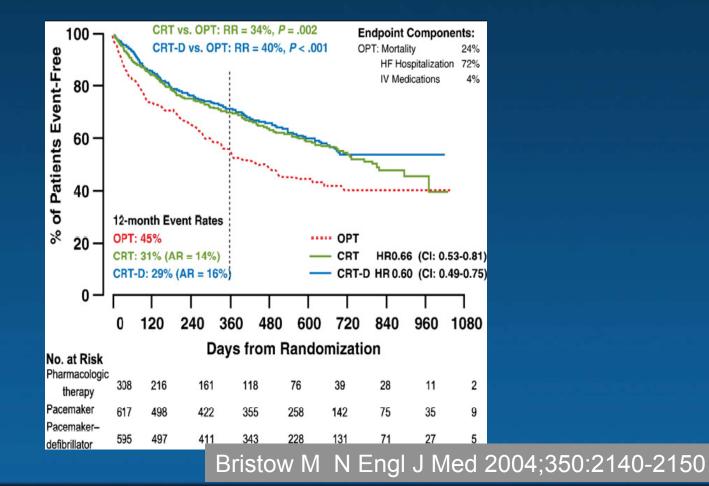
Quality of Life and CRT


CHF Hospitalizations with CRT

McAlister FA. Ann Intern Med 2004;141:381-390

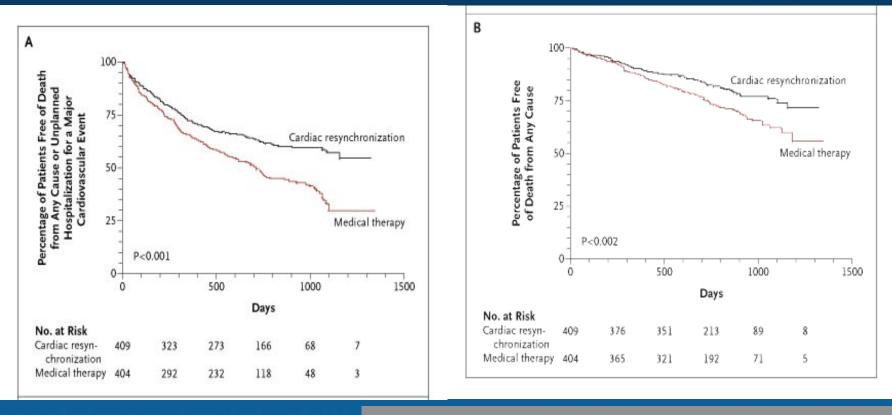
Does CRT Prevent Death?

All Cause Mortality and CRT


McAlister FA. Ann Intern Med 2004;141:381-390

The COMPANION Trial

- 1520 patients* enrolled at 30 centers
- NYHA FC III/IV, LVEF ≤0.35, QRS
 ≥120 ms
- Optimal medical therapy vs. CRTp vs. CRTd with optimal medical therapy


*stopped early by DSMB; 2200 planned

COMPANION: 1^o Endpoint Death, Hospitalization or Outpatient Medication

CARE – HF Study Maybe CRTp is all that is needed

36% reduction in all-cause mortality, 10% absolute risk reduction

Cleland JGF N Engl J Med 2005;352:1539-1549

PROSPECT - Predictors of Response to CRT (*Circulation.* 2008;117:2608-2616

- 53 European, American and Hong Kong centers
- 498 pts with standard CRT indications
- Twelve echo parameters of dyssynchrony were evaluated.
- Outcomes improved clinical composite score and >=15% reduction in LVESV at 6 months
- AUC<0.62

PROSPECT - Predictors of Response to CRT

(Circulation. 2008;117:2608-2616

• Conclusion


 Given the modest sensitivity and specificity in this multicenter setting despite training and central analysis, no single echocardiographic measure of dyssynchrony may be recommended to improve patient selection for CRT beyond current guidelines.

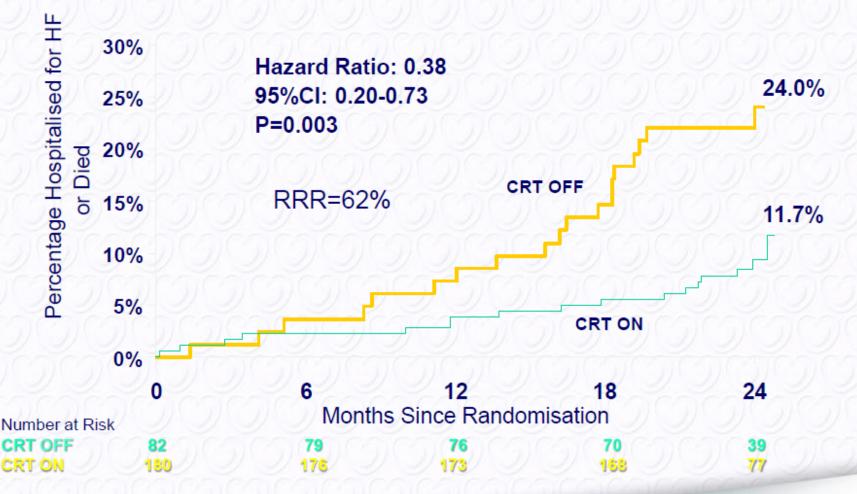
Recommendation in patients with heart failure in <u>NYHA</u> function class III/IV

Recommendation	Patient Population	Class	LoE
CRT-P/CRT-D [*] is recommended to reduce morbidity and mortality	NYHA function class III/IV LVEF≤35%, QRS≥120 ms, SR Optimal medical therapy Class IV patients should be ambulatory ^{**}		A

*Reasonable expectation of survival with good functional status for >1 year for CRT-D. Patients with a secondary prevention indication for an ICD should receive a CRT-D.

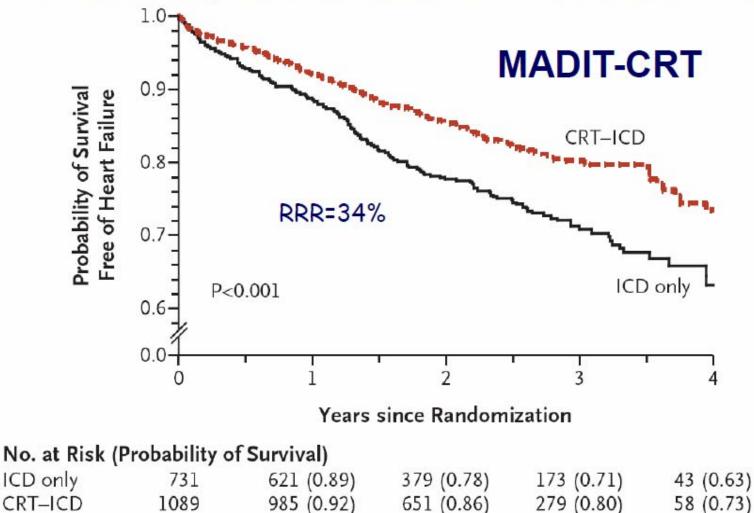
** No admissions for HF during the last month and a reasonable expectation of survival >6 months.

CRT-P/CRT-D in patients with heart failure in <u>NYHA function class III/IV</u>


Key points:

- New: LV dilatation no longer required
- New: Class IV patients should be ambulatory
- New: Reasonable expectation of survival with good functional status for >1 year for <u>CRT-D</u>
- Evidence is strongest for patients with typical LBBB
- Similar level of evidence for CRT-P and CRT-D

www.escardio.org


REVERSE 24-months analysis: Reductions in risk of first HF hospitalisation or death

Daubert et al. JACC 2009;54:1837-1846

Probability of Survival Free of Heart Failure

www.escardio.org

N Engl J Med 2009;361

MADIT-CRT: Risk of death or heart failure

Variable	No. of Events/No. of Patients			67	Haza	rd Rati	0		
Age					_	_			
<65 yr	142/852								
≥65 yr	230/968		-		_				
Sex									
Male	294/1367				_	-			
Female	78/453	-		_					
NYHA class									
Ischemic I	53/265			i	_	_			
Ischemic II	186/734		-						
Nonischemic II	133/821		-						
QRS duration									
<150 msec	147/645			i i	-				
≥150 msec	225/1175				-				
LVEF				- i					
≤25%	101/646								
>25%	271/1174	,	60						
LVEDV				_					
≤240 ml	184/828					- C			
>240 ml	184/969					8			
LVESV									
≤170 ml	190/835			-					
>170 ml	178/962			— T		-3 (·			
All patients	372/1820								
		0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6
		-	CPT	-ICD B			3	Only Be	Har
			CRI	-100 0	ener	_	ico	Unity Be	ei

Moss et al. N Engl J Med 2009;361:1329-38

Recommendati	ion in patients wit	h heart f	ailure
in <u>N</u>	YHA function class	ss II	
2	2 2 2 2 2 2 2		22

Recommendation	Patient Population	Class	Level
CRT preferentially by CRT-D is recommended to reduce morbidity or to prevent disease progression*	NYHA function class II LVEF≤35%, QRS≥150 ms, SR Optimal medical therapy	I	A

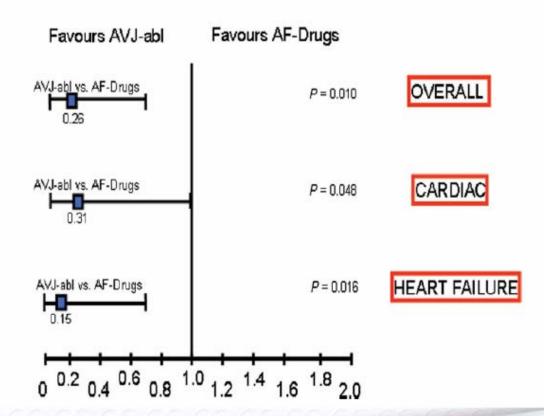
* The guideline indication has been restricted to patients with HF in NYHA function class II with a QRS width ≥150 ms, a population with a high likelihood of a favourable response.

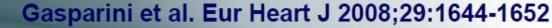
www.escardio.org

CRT-D in patients with heart failure in <u>NYHA function class I/II</u>

Key points:

- 2 recent, randomised, prospective, multicentre trials in mild HF (MADIT-CRT and REVERSE) demonstrate reduced morbidity
- 18% of patients in REVERSE and 15% of patients in MADIT-CRT were in NYHA I class at baseline
- Improvement primarily seen in patients with QRS≥150 ms and/or typical LBBB
- Women with LBBB showed a particularly favourable response
- Survival advantage not established
- In MADIT-CRT the extent of reverse remodelling was concordant with and predictive of improvement in clinical outcomes




www.escardio.org

Adjusted hazard ratios for death AV ablation vs. AF drug therapy

Atrial Fibrillation

Hazard ratio estimates on the mode of death were adjusted for centre, age, gender, aetiology, NYHA class, QRS width, left ventricular ejection fraction, and device type.

OCIETY O


www.escardio.org

Recommendations in patients with heart failure and permanent atrial fibrillation

Recommendations	Patient Population	Class	Level
CRT-P/CRT-D* should be considered to reduce morbidity	NYHA function class III/IV LVEF≤35%, QRS≥130 ms Pacemaker dependency induced by AV nodal ablation	lla	В
CRT-P/CRT-D* should be considered to reduce morbidity	NYHA function class III/IV LVEF≤35%, QRS≥130 ms Slow ventricular rate and frequent pacing**	lla	C

*Reasonable expectation of survival with good functional status for >1 year for CRT-D. Patients with a secondary prevention indication for an ICD should receive a CRT-D.
** Frequent pacing is defined as ≥95% pacemaker dependency

CRT-P/CRT-D in patients with heart failure and permanent atrial fibrillation

Key points:

- Approximately 1/5 of CRT implantations in Europe are in patients with permanent AF
- NYHA class III/IV symptoms and an LVEF ≤35% are well-established indications for ICD
- Frequent pacing is defined as ≥95% pacemaker dependency
- AV nodal ablation may be required to assure adequate pacing

European Heart Journal

doi:10.1093/eurheartj/ehq337

- Evidence strongest for patients with an LBBB pattern
- Insufficient evidence for mortality recommendation

Recommendations in patients with heart failure and a concomitant class I pacemaker indication

Recommendations	Patient Population	Class	Level	
CRT-P/CRT-D* is recommended to reduce morbidity	NYHA function class III/IV LVEF≤35%, QRS ≥120 ms		В	
CRT-P/CRT-D* should be considered to reduce morbidity	NYHA function class III/IV LVEF≤35%, QRS<120 ms	lla	С	
CRT-P/CRT-D* may be considered to reduce morbidity	NYHA function class II LVEF≤35%, QRS<120 ms	llb	С	

* Reasonable expectation of survival with good functional status for >1 year for CRT-D. Patients with a secondary prevention indication for an ICD should receive a CRT-D.

CRT-P/CRT-D in patients with heart failure and a <u>conventional pacemaker indication</u>

Key points:

In patients with a conventional indication for pacing, NYHA III/IV symptoms, LVEF ≤35%, QRS width ≥120 ms, a CRT-P/CRT-D is indicated
RV pacing will induce dyssynchrony
Chronic RV pacing in patients with LV dysfunction should be avoided
CRT may permit adequate uptitration of beta-blocker treatment

Evidence table 1: Inclusion criteria in RCTs evaluating CRT in heart failure

Trial	Patients	NYHA class	LVEF(%)	LVEDD (mm)	SR/AF	QRS (ms)	ICD
MUSTIC-SR (16)	58	III C G C	<u>≤</u> 35%	≥60	SR	≥150	No
MIRACLE (5)	453	III,IV	≤35%	≥55	SR	≥130	No
MUSTIC AF (35)	43		<u><</u> 35%	≥60	AF	≥200	No
PATH CHF (6)	J 41	III,IV	≤35%	NA	SR	<u>≥120</u>	No
MIRACLE ICD (8)	369	III,IV	≤35%	≥55	SR	≥130	Yes
CONTAK CD (55)	227	II,IV	<u><</u> 35%	NA	SR	<u>≥</u> 120	Yes
MIRACLE ICD II (9)	186	1 2	≤35%	≥55	SR	≥130	Yes
PATH CHF II (56)	89	III,IV	≤35%	NA	SR	≥ <mark>1</mark> 20	Yes/No
COMPANION (10)	1520	III,IV	≤35%	NA	SR	≥ 1 20	Yes/No
CARE HF (11)	814	III,IV	≤35%	≥30	SR	≥120	No
CARE HF (17)	813	III,IV	≤35%	≥30	SR	≥120	No
REVERSE (21, 22)	610	1,11	<u><</u> 40%	≥55	SR	<u>≥</u> 120	Yes/No
MADIT CRT (20)	1800	I,II	<u><</u> 30%	NA	SR	<u>≥</u> 130 ms	Yes
RAFT (57)	1800 Canada	11,111	<u><</u> 30%	>60	SR/AF	≥130 ≥200 *	Yes

Evidence table 2: Endpoints, design and main findings of the **RCTs evaluating CRT in heart failure**

Trial	Endpoints	Design	Main findings
MUSTIC-SR (16)	6MWT, QoL, pVO ₂ , Hosp	Single-blinded, controlled, crossover, 6 months	CRT-P improved: 6MWT, QOL, pVO2; reduced Hosp
MIRACLE (8)	NYHA class, QoL, pVO ₂	Double-blinded, controlled, 6 months	CRT-P improved: NYHA, pVO ₂ , 6MWT
MUSTIC AF (35)	6MWT, QoL, pVO ₂ , Hosp	Single-blinded, controlled, crossover, 6 months	CRT-P improved all; reduction of Hosp
PATH CHF (6)	6MWT, pVO ₂	Single-blinded, controlled, crossover, 12 months	CRT-P improved: 6MWT; pVO2
MIRACLE ICD (8)	6MWT, QoL, Hosp	Double-blinded, ICD vs. CRT-D 6 months	CRT-D improved all from baseline (not ICD)
CONTAK CD (54)	All-cause death + HF Hosp, pVO ₂ , 6MWT, NYHA class, QoL, LVEDD, LVEF	Double-blinded, ICD vs. CRT-D 6 months	CRT-D improved: pVO ₂ , 6MWT; reduced LVEDD and increased LVEF
MIRACLE ICD II (9)	VE/CO ₂ , pVO ₂ , NYHA, QoL, 6MWT, LV volumes, LVEF	Double-blinded, ICD vs. CRT-D 6 months	CRT-D improved: NYHA, VE/CO ₂ ; volumes, LVEF
COMPANION (10)	(1) All-cause death or Hosp	Double-blinded, controlled, OPT, CRT-D, CRT-P, about 15 months	CRT-P/CRT-D: reduced (1)
CARE-HF (11)	(1) All-cause death or CV event (2) All-cause death	Double-blinded, controlled, OPT, CRT-P, 29 months	CRT-P reduced (1) and (2)
REVERSE (21)	 (1) % worsened by clinical composite endpoint, (2) LVESVi, (3) HF hosp, (4) all-cause death 	Double-blinded, controlled, OPT, CRT-P ±ICD, 12months	Primary endpoint NS CRT-P/CRT-D reduced (2) and (3) hosp but not (4)
MADIT-CRT (20)	(1) HFevent or death (2) All-cause death (3) LVESV	Controlled, CRTP, CRT-D, 2.4 years	CRT-D reduced (1) and (3c) but not (2)

European Heart Journal

www.escardio.org

Summary of indications for CRT in patients with heart failure

Recommendations	Recommendations Patient population		LoE
CRT-P/CRT-D* is recommended to reduce morbidity and mortality NYHA class III/IV symptoms LVEF≤35%, QRS≥120 ms, SR Optimal medical therapy Class IV patients should be ambulatory**		LVEF≤35%, QRS≥120 ms, SR Optimal medical therapy	
<u>CRT preferentially by CRT-D*</u> is recommended to reduce morbidity or to prevent disease progression	<u>NYHA class II</u> symptoms LVEF≤35%, QRS≥150 ms, SR	1	A
CRT-P/CRT-D* should be considered to reduce morbidity	Permanent Atrial Fibrillation NYHA class III/IV LVEF≤35%, QRS≥130 ms Pacemaker dependency induced by AV nodal ablation	lla	В
CRT-P/CRT-D* should be considered to reduce morbidity	T-D* should be Permanent Atrial Fibrillation		С
CRT-P/CRT-D* is recommended to reduce morbidity Class I indication for pacemaker NYHA class III/IV LVEF≤35%, QRS ≥120 ms		I	В
CRT-P/CRT-D* should be considered to reduce morbidity Class I indication for pacemaker NYHA class III/IV LVEF≤35%, QRS<120 ms		lla	С
CRT-P/CRT-D* may be considered to reduce morbidity	Class I indication for pacemaker NYHA class II LVEF≤35%, <u>QRS<120 ms</u>	llb	С
LVAD may be considered as destination treatment to reduce mortality	NYHA IIIB/IV symptoms Ineligible for cardiac transplantation LVEF≤25%	llb	В

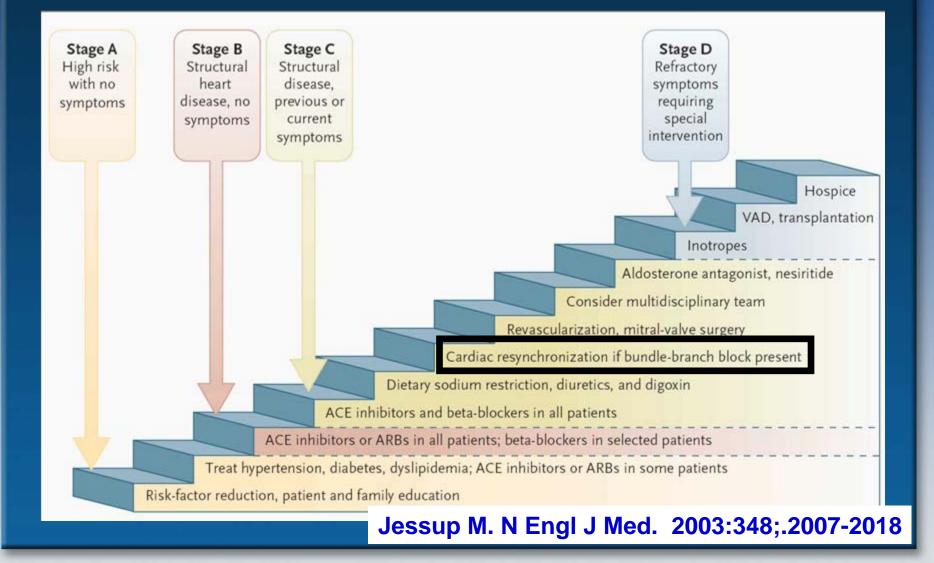
Possible Risks for Implantable Devices

- Vascular complications
- Long-term risk of infections
- Leads may break/fracture
- Recalls

BUT:

Significant benefits –evaluate patients carefully Devices are very reliable and improving constantly

The Importance of Patient Selection


- Maintain relationship with EP/patient and family
- Need to understand:
 - Why treatment is indicated
 - What are the downsides
 - Will continue with medical therapy
 - Possibility of inappropriate shocks

IMPROVE HF: Registry to Improve the Use of Evidence-Based Heart Failure Therapies in the Outpatient Setting

- 167 outpatient cardiology practices surveyed in the USA
- 15 381 pts with HF, previous MI/LV Dx
- Results for utilization of device therapy in eligible patients:
 - ICD/CRT-D 51%
 - CRT 39%
- Median 27% of pts received all HF therapies for which they were potentially eligible on the basis of chart documentation.
- Use of guideline-recommended therapies by practices varied widely
- Need to translate outcomes of RCTs, guidelines into clinical practice

Fonarow G, Circ Heart Fail, 2008

Stages of Therapy

