Revascularization of Chronic Total Occlusions

Amit Segev, MD Chaim Sheba Medical Center

PCI for Chronic Total Occlusions

"The Last Great Frontier of Interventional Cardiology"

Chronic Total Occlusion - CTO

- 100% narrowing of the artery
- No angiographically detectable antegrade flow (TIMI flow = 0)
- > 1 month old

CTOs in Perspective NHLBI Dynamic Registry and BARI study 1997-1999, n=1,761

- Presence of total occlusion 31%
- Attempted total occlusion 7.5%

Srinivas et al. Circulation 2002

Current Treatment of CTO

30% coronary atherosclerosis and >50% peripheral atherosclerosis patients present with total occlusions

Only 12-13% pts currently treated in cath lab

CTO: What's In the Lumen?

CTO: What's in the Lumen?

Proteoglycans common in CTO<1 yr Increased fibrocalcific plaques with Tage

Srivatsa et al, J Am Coll Cardiol 1997:29:955-63

CTO: What's in the Lumen?

Theoretical rationale for CTO Revascularization

- Increased long-term survival
- Improved left ventricular function
- Electrical stability of myocardium and reduced predisposition to arrhythmic events
- Increased tolerance of future acute coronary syndromes, mainly occlusions

Clinical rationale for CTO intervention

Lamas GA et al, Circulation 1995

Long-term survival associated with successful CTO revascularization Late open artery theory

Trial	Success N	Failure N	Follow-up years	Success	Mortality,% Failure	Р
British Columbia Registry	1118	340	1	10.0	19.0	<0.001
Suerro et al.	1491	514	10	26.6	35.0	0.001
TOAST GISE	286	83	6	1.1	3.6	0.13

Long-term outcome after intended revascularization of non-acute CTOs Multivariate mortality model

	Hazzard ratio	95% Cl	р
Failure	2.27	1.56-3.30	<0.0001
Age (per decade)	1.33	1.12-1.58	0.001
LVEF<50%	2.33	1.58-3.43	<0.0001
Multivessel CAD	1.62	1.09-2.40	0.02
Prior CHF	1.73	1.10-2.76	0.02
ESRD	2.77	1.36-1.56	0.005
COPD	1.64	1.01-2.67	0.05
Diabetes	1.50	0.99-2.27	0.055

Ramanathan and Buller, TCT 2003

Technical Issues

- Technically challenging
 - Organized fibrocalcific atherosclerotic plaque
 - Difficult visualization
 - >75% inability to cross with a guide-wire
- Time consuming
 - >60 min procedure
 - >20 min of fluoro time is typical

Guidelines – PCI of CTO

- ESC class lla level C
- Class III
 - Small area of viability
 - No ischemia
 - Low likelihood of success

PCI Limitations

- Success rate: 20-74% of attempted cases
- Predictors of success:
 - Age of occlusion
 - Vessel diameter
 - Location
 - Degree of calcification
 - Bridge collaterals
 - Operator dependent
 - Experience
 - Patience and persistence
- Time, radiation exposure, and difficulty often discourage CTO revascularization attempts

Angiographic predictors of poor outcome (traditional)

- Long gap
- Non-tapering stump
- Side-branch at occlusion
- Vessel turtuosity
- Calcification
- Ostial location
- Poor distal vessel visibility
- Bridge collaterals

Other factors to consider

- Access / backup (iliac and aortic turtuosity)
- Renal function
- Risk of CABG
- Operator experience

How to do (CTO) Angioplasty in 3 easy steps!!!

- 1. Cross CTO with 0.014" Guidewire
- 2. Inflate balloon that was advanced over the guidewire
- 3. Deploy stent that is mounted on a second angioplasty balloon catheter

Step #1: Advancing the guidewire through the blockage

- Usually like pushing through concrete
- Conventional guidewires usually unsuccessful
- Mechanical Approaches:
 - Dedicated CTO Guidewires
 - Specialty Guidewires
 - Specialty Devices
- Biological Approaches:
 - Plaque Softening
 - Intraluminal Angiogenesis

Guide-wire selection

- Floppy tip selection >> penetration
- Intermediate selection > penetration
- Stiff tip selection < penetration
- Ultra-stiff tip selection << penetration
- Tapered tip selection << penetration
- Coated wire better torque

Comparison of wires

Antegrade wire techniques

- One wire technique
- Parallel wire technique
- Multiple wire technique

Parallel wire technique

Bilateral parallel wire technique

Parallel wire technique

Utility of intravascular ultrasound

- IVUS can differentiate a true lumen from a false lumen by identifying side branches (which arise only from the true lumen) and intima and media (which surround the true lumen, but not the false lumen).
- IVUS can confirm when the guidewire has reentered the true lumen from a false lumen
- IVUS studies have also revealed that the major reason that it is difficult to penetrate the distal cap into the true lumen is that the guidewire tends to deflect into a false channel, not because of extensive calcification or fibrosis.

1st wire into false lumen 2nd wire in true lumen C+D: wire is confirmed in true lumen E+F: IVUS imaging of false lumen J: septal branch

Ostial occlusion

Guide wire crossing technique (Jan. '06 – Dec. '06, n=170 lesions)

Antegrade single wire technique167 (98%)Parallel wire technique50 (29%)IVUS guide wire crossing11 (6%)Retrograde approach50 (29%)

Subintimal Tracking and Reentry (STAR)

OTW balloon injection creates tubular dissection

"Umbrella handle" tip wire advanced via OTW balloon Wire advanced into true lumen

After crossing with wire.....

- Low profile micro-catheters
- Low profile balloon
 - Ryujin 1.25mm
 - Avion 1.25mm
- Tornus
Role of CTA

- Predictors of failure
 - Length > 15 mm
 - Severe calcifications
- Angiographic predictors
 - Blunt entrance into occlusion
- CTA length was routinely longer than angiographic estimation

Length of the Occlusion

Assessment of distal vessel & sidebranches

Definition of intra-occlusion angle

Dedicated CTO Guidewires

- Asahi
 - Miraclebros excellent torque (3g-12 g)
 - Confienza, Confienza Pro- pentration (9g-12g)
- Medtronic
 - Persuader
- Cordis
- Cross-it Advantages are operator familiarity with conventional guidewires However these are stiffer guidewires with risk of perforation

Specialty Guidewires

- Interesting novel technology
- Require some differences in techniques
 from conventional guidewires

CTO Technologies

• Specialized guide-wires – Shinobi, Miracle Bros., Conquest...

- Lumend Frontrunner Catheter (blunt micro-dissection)
- Safe Cross system Optical Coherence Reflectometry (OCT)
- US

LuMend Frontrunner Catheter Controlled Blunt Micro-Dissection Technique

 Separates atherosclerotic plaque in various tissue planes, creating a passage through the CTO

 Uses the elastic properties of adventitia versus inelastic properties of fibrocalcific plaque to create fracture planes

LUMEND FRONTRUNNER CORONARY CATHETER CONTROLLED BLUNT MICRO-DISSECTION TECHNIQUE

Frontrunner: Controlled Blunt Micro-Dissection

Frontrunner Catheter: Clinical Study

- Prospective, controlled multi-center trial
- 107 patients
- CTOs refractory to 10 min (fluoroscopy time) conventional GW attempt
- Success defined as placement of guide wire beyond CTO in the true vessel lumen
- Mean lesion length: 22 mm (range 2 53 mm)

Frontrunner Clinical Results

Complications Success rates 100% 5% 89.7% 3.7% 80% -4% 61.7% 56.1% 60% -3% 1.9% 1.9% 40% -2% 0.9% 20% 1% 0% 0% Pertoration Wire Access Cross other Death elli-СТО СТО distal true lumen Feb 2002: FDA 510k Clearance

Safe Cross – IntraLuminal Therapeutics

Optical Coherence Reflectometry (near-infrared light) guidance system Coupled to pulse radiofrequency ablation January 2004: 510k clearance from the FDA for coronary occlusions

OCR Waveform Displays

No artery wall detected

Artery wall detected

No artery wall detected

Guided Radio Frequency Energy Ablation of Total Occlusions

GREAT Study Overview

- Originally begun as a randomized trial at 10 sites
 - Native CTO (> 2.5 mm, < 30 mm length)
 - 1:1 randomization of treatment with the SAFE-CROSS[™] RF versus current standard wires
 - 30 day safety and efficacy endpoints
 - Patients who failed the conventional wire can enter GREAT Registry after 30-days -> OCR
- Later converted to 116 patient registry, after a failed 10 minute attempt with a conventional wire (~Lumend study)

Device Success

Perforation Wire exit or local stain Extravasation

12% 6.7% 0.7%

55.7%

Complications 6.0% (9)

 Q-MI, CABG, Death 0%
 MACE (all NQMI) 4.7% (7)
 Clinical Perforations 2.6% (4)
 Device related 0.7% (1)

CROSSER System- FlowCardia Inc.

FlowCardia CROSSER System

High frequency mechanical revascularization

High frequency mechanical vibrations at 20 kHz Vibrational energy provides cavitational effects

CTO: Therapeutic Ultrasound

Device Positioning

CTO - Results of New Technologies

	Device	Application	Ν	tech. success	perforations
LUMEND	Frontrunner	Coronary	105	56%	1.9%
GREAT	Safe-cross	Coronary	116	56%	2.6%
GRIP	Safe-cross	Peripheral	72	76%	0

Should we develop a nonmechanical, biological modality to facilitate CTO revascularization?

How about enzymatic degradation?

Pathology of Chronic Total Occlusions: Human Coronary Arteries

- Majority (78%) of angiographic CTO are ≈99% occluded by histology
- Collagen: Major structural components of the extracellular matrix
- Proteoglycans are common in CTO < 1 yr
- Intimal plaque micro-vascular channels are common in CTO (>75%)

Courtesy of Dr. Renu Virmani, AFIP, Bethesda

Rabbit Model of Femoral Artery CTO

Rabbit femoral artery

Thrombin injection Restoration of blood flow after 1 hour Angiographic confirmation of occlusion at 3-4 months -thrombus / fibrin is replaced by fibrotic tissue (collagen)

Chronic Total Occlusions: Rabbit Femoral Model

Strauss BH et al, Circulation 2003;108:1259-62

CTO by MRI

Proteinases

Enzymes that catalyze the breakdown of native proteins

Matrix Metalloproteinases

- Zinc and calcium-dependent enzymes
- >20 members
- MMP-1, MMP-2, MMP-9, MMP-3
- degrade all extracellular matrix components
- 3 broad categories: collagenases (MMP-1), gelatinase, and stromelysins

Gelatinase Activity After Arterial Injury

Strauss et al Circ Res 1996;79:541

Li C et al, JACC 2002;39:1852-8

Type IA Collagenase (Sigma)

- Source: Clostridium histolyticum
- Components
 - Collagenase
 - Clostripain
 - Neutral Protease
 - Trypsin-like activities

CTO in femoral artery

Advancement of an over-the-wire balloon and local injection of collagenase solution while balloon remains inflated (1 hour)

Balloon removal

Successful guide-wire crossing after 24 hours

Collagenase: Successful Guide Wire Crossing

Rabbit #849

Right side

13 weeks after occlusion

Rabbit 849 Right Femoral Artery

CTO Characteristics

• Occlusion Age: 16 ± 5 weeks (range 10-25 weeks)

 Mean occlusion length: 28 ± 9 mm (range 14-46 mm)

Guide Wire Crossing Success Rates at 72 Hours Post Infusion

Guide Wire Crossing at 72 hours

Success Collagenase 450 µg

Failure Placebo
Treatment Effects At 24 Hours (No Guide Wire Attempt)

Collagenase 450 µg

Strauss BH et al, Circulation 2003;108:1259-62

24 hours: Proteolytic Effects

Gelatin Zymogram

Collagen Fragments Western Immunoblot COL 2 3/4 Against Carboxy Terminus

Lane 1- Collagenase artery Lane 2- Placebo artery

Strauss BH et al, Circulation 2003;1081259-62

Purified Collagenase:

- 38-fold more potent than Sigma collagenase preparation
- No contaminating proteolytic activity
- Suitable for human studies

Rabbit Femoral CTO Model

Dosing Study:

 $100\text{-}200~\mu g~(n\text{=}10)$ no or mild subcutaneous bruising 250-500 $\mu g~(n\text{=}7)$ moderate-severe sc bruising

Guide Wire Crossing at 24 Hours 150 µg (n=10) 100% Successful !!

Subcutaneous Bruising

500 µg collagenase

150 μg collagenase

Rabbit CTO cross sections with successful crossings

Segev A et al. JVIR, Submitted

Gelatinase Activity at 24 Hours: 150 µg

Segev A et al. Submitted

Intra-coronary Purified Collagenase: Swine Hearts

50µg

75µg

450µg

1000µg

150µg

Arterial Medial Damage Only at High Dose (450 μg)

Segev A et al. Cardiovasc Pathol, Submitted

1-Month follow-up

- 9 pigs
- Intra-coronary collagenase:
 - 150, 450, 1000µg
- Macroscopically normal
- 2/3 pigs with high dose showed normal myocardium with no fibrosis.
- 1 pig showed mild fibrosis.

Conclusion

- Local delivery of collagenase facilitates guide-wire crossing in chronic total occlusions
- No adverse effects on arterial structure
- Local bruising is a dose related side effect
- Human phase I study is planned

Phase I Clinical Trial

- Objective
 - To determine the safety and efficacy of 3 different doses of a human-grade purified collagenase for the treatment of failed coronary chronic total occlusion (up to 1 year old).
- Inclusion criteria:
 - Patients with CTO with a clinical indication for revascularization.
 - CTO \leq 1 year old.
 - Previously failed coronary intervention or if patient recruited as an ad hoc, failure to cross the occlusion with conventional wires after 10 minutes (FDA definition).
- Exclusion criteria:
 - Saphenous vein graft occlusion
 - True ostial LAD, LCX or RCA occlusions
 - Major side branch immediately proximal to the occlusion

Phase I Clinical Trial

- Protocol:
 - Confirmation of failed conventional PCI attempts and no exclusion criteria.
 - Advancement of a short over-the-wire balloon until against the occlusion and removal of wire.
 - Inflation of the balloon to nominal size.
 - <u>Slow</u> injection of collagenase solution through the balloon lumen.
 - The balloon remains inflated for up to 1 hour depending on patient's tolerability.
 - ACT>300 seconds throughout the procedure.
 - Balloon deflation.
 - Patient remains in hospital and will be ECG monitored and serial blood samples for cardiac enzymes taken
 - The day after, repeat conventional PCI
- Three different doses will be tested: 50µg, 75µg, and 100µg.
- Each group will consist of 6 patients. Total = 18 patients.
- The first dose to be assessed will be 50µg.

Future Research

1) CTO imaging

2) Augmentation of CTO Micro-Vessels by Cell Therapy with Engineered EPCs

CTO by micro-CT

Fibroblasts delivery into CTO

UNITED STATES PROVISIONAL PATENT APPLICATION

Inventors: Bradley H. Strauss of Toronto, Canada;, and Amit Segev of Raanana, Israel.

AUGMENTATION OF INTRALUMINAL MICROVESSEL FORMATION TO FACILITATE GUIDE WIRE CROSSING IN CHRONIC TOTAL OCCLUSIONS

Conclusions

- Remember the pathology
- Clinical indication !!!
- Favorable angiographic appearance
- Consider CTA
- Advanced guide-wires techniques
 No room for dedicated devices

- No room for dedicated devices - so far...

• STAR and retrograde techniques – only if your last name rimes with SUZUKI