# Complications of Transradial Catheterization: What to Look For and How to Avoid Them

Amir Halkin Tel Aviv Medical Center Tel Aviv, Israel

#### **Conflicts of interest**

# None to declare



# Radial Artery Catheterization: The way to go MORTON KERN, 2009

"The complications from radial artery access are trivial compared to femoral, with <4% loss of radial artery pulse as the worst of it"

"Why do I persist with femoral artery access when complications from radial access are so much lower?"

"I left Quebec with the enthusiasm of a converted sinner, returning to UCI to begin our radial program ...."

#### What to Look for and How to Avoid Them

Why Use Radial Access?

**Anatomical Considerations** 

**Complications: Classification and Incidence** 

**Complications: Prevention and Management** 

# Why Use Radial Access?

Patient comfort, early ambulation/discharge

**Safety (...?)** 

## Radial vs. Femoral Access: Safety







**RIVAL. LANCET 2011** 

# Radial vs. Femoral Access

#### **RIVAL. LANCET 2011**

| Other secondary outcomes                                                         | Radial        | Femoral      |                  |         |
|----------------------------------------------------------------------------------|---------------|--------------|------------------|---------|
| PCI success*                                                                     | 2204 (95.4%)  | 2235 (95·2%) | 1.01 (0.95–1.07) | 0.83    |
| Access site crossover                                                            | 265 (7.6%)    | 70 (2.0%)    | 3.82 (2.93-4.97) | <0.0001 |
| Major vascular complications                                                     | 49 (1.4%)     | 131 (3.7%)   | 0.37 (0.27–0.52) | <0.0001 |
| Minor bleeding                                                                   | 100 (2.9%)    | 118 (3.4%)   | 0.84 (0.65–1.10) | 0.21    |
| Post-hoc exploratory outcomes                                                    |               |              |                  |         |
| ACUITY major bleeding†                                                           | 66 (1.9%)     | 157 (4.5%)   | 0.43 (0.32-0.57) | <0.0001 |
| Death, MI, or stroke, or ACUITY major bleed†                                     | 167 (4.8%)    | 256 (7·3%)   | 0.65 (0.53-0.78) | <0.0001 |
| Non-CABG major bleeding and maj<br>vascular complications                        | or 67 (1·9%)  | 157 (4.5%)   | 0.43 (0.32-0.57) | <0.0001 |
| Death, MI, stroke, non-CABG majo<br>bleeding, or major vascular<br>complications | or 167 (4·8%) | 260 (7·4%)   | 0.63 (0.52–0.77) | <0.0001 |

Vascular Complications Associated With Arteriotomy Closure Devices in Patients Undergoing Percutaneous Coronary Procedures A Meta-Analysis

#### n=37,066



#### What to Look for and How to Avoid Them

Why Use Access?

**Anatomical Considerations** 

**Classification and Incidence** 

**Prevention and Management** 

#### **Anatomical Considerations**

# Congenital variants

**Arterial tortuosity** 



Lo et al. Heart 2009

Rodriguez-Niedenfuhr et al. J Anatomy 2001

#### **Anatomical Considerations**

## Congenital anatomical variants

| Location        | Variant                        |                   |
|-----------------|--------------------------------|-------------------|
| Arm             | Superficial brachial           |                   |
|                 | Accessory brachial             | <b>≅2-3:1,000</b> |
| Arm and Forearm | Brachio-radial ≅15:100         |                   |
|                 | Brachio-ulnar                  |                   |
|                 | Brachio-interosseous           |                   |
|                 | Brachio-median                 |                   |
|                 | Superficial brachio-radial     |                   |
|                 | Superficial brachio-ulnar      |                   |
|                 | Superficial brachio-ulnoradial |                   |
| Forearm         | Superficial radial             |                   |
|                 | Absent radial ≅3:1             | 0,000             |
|                 | Absent ulnar ≅ 1-2             | :10,000           |



Rodriguez-Niedenfuhr et al. J Anatomy 2001

#### **Anatomical Considerations**

**Arterial tortuosity** 

LocationVariantRadialLoops≅2.5:100Tortuosity≅2:100







#### **Anatomical Considerations**

Radial Anomaly vs. No Radial anomaly



Lo et al. Heart 2009

# Transradial Catheterization Complications: What to Look for and How to Avoid Them

Why Use Access?

**Anatomical Considerations** 

**Classification and Incidence** 

**Prevention and Management** 

## Classification and Incidence

Kanei al. CCI 2011

| Event                                | Rate   |  |
|--------------------------------------|--------|--|
| Asymptomatic radial artery occlusion | 2-18%  |  |
| Nonocclusive radial artery injury    | common |  |
| Radial artery spasm                  | 5-10%  |  |
| Sterile granuloma                    | 2.8%   |  |
| Hand ischemia                        | rare   |  |
| Perforation                          | rare   |  |
| Pseudoaneurysm                       | rare   |  |
| AV fistula                           | rare   |  |
| Nerve damage                         | rare   |  |
| Hemorrhge/transfusion                | rare   |  |

# Risk Factors

| Event                                                                                                              | Risk factors                                                                                                                    |  |
|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| Asymptomatic radial artery occlusion                                                                               | <ul> <li>•Prolonged high pressure compression</li> <li>•↑Sheath/Artery diameter</li> <li>•Multiple puncture attempts</li> </ul> |  |
| Nonoccle  Operator-related factors:  Hand isc  Radial ar  Perforati  Pseudoar  Nonoccle  Operator-related factors: |                                                                                                                                 |  |
| AV fistula                                                                                                         | <ul> <li>Excessive anticoagulation</li> <li>Large sheaths</li> <li>Multiple punctures</li> </ul>                                |  |
| Sterile granuloma Nerve damage                                                                                     | •Cook sheaths •Multiple punctures                                                                                               |  |

## Radial Occlusion and Critical Hand Ischemia



#### Critical Hand Ischemia

#### **Core Curriculum**

# Transradial Cardiac Catheterization: A Review of Access Site Complications

Yumiko Kanei,<sup>1\*</sup> MD, Tak Kwan,<sup>1</sup> MD, Navin C. Nakra <sup>1</sup> MD, Michael Liou <sup>1</sup> MD, Yili Huang,<sup>1</sup> DO, Lori L. Vales,<sup>1</sup> MD, John T. Fo

Transradial catheterization (TRC) has bee access site related complications as con increased adoption of transradial acces major and minor complications of TRC. I atic radial artery occlusion, which rarely

"Hand ischemia with necrosis has never been reported during TRC with thorough pre-examination of intact collateral circulation..."

lateral perfusion of the hand. Adequate al..... niques, and smaller sheath size can minimize the risk of radio. Ucclusion. Hand ischemia with necrosis has never been reported during TRC with thorough pre-examination of intact collateral circulation. Radial artery spasm is relatively common, and can result in access and procedural failure. It can be prevented by the use of vasodilator cocktails and hydrophilic sheaths. Radial artery perforation can lead to severe forearm hematoma and compartment syndrome if not managed promptly. Careful observation, prompt detection of the hematoma, and management with a pressure bandage dressing are critical to avoid serious complications. Pseudoaneurym and arteriovenous fistula are rare complications, which can likely be managed conservatively without surgical intervention. Nerve injury occurring during access has been reported. Close observation for improvement is necessary, although symptoms usually improve over time. In summary, to prevent access site complications, avoidance of multiple punctures, gentle catheter manipulation, use of guided compression, coupled with careful observation for adverse warning signs such as hematoma, loss of pulse, pain, are critical for safe and effective TRC. @ 2011 Wiley-Liss, Inc.

# Case Report (II)

56 y.o. ♀
Suspected troponin positive ACS
Urgent TRC cath (negative Allen test) ⇒ NCA

Severe "hand pain"
Physical exam reportedly normal, palpable radial pulse

- ⇒ required opiates
- Doppler study
- ⇒ radial artery occlusion

# Case Report (II)





Vascular surgery consult: heparin, analgesia



# Case Report (II)



# Transradial Catheterization Complications: What to Look for and How to Avoid Them

Why Use Access?

**Anatomical Considerations** 

**Classification and Incidence** 

**Prevention and Management** 

# Transradial Catheterization Complications: Prevention

#### **Case selection**

- Age, gender
- Co-operative patient
- Palmar arch circulation

#### Access

- ·Liberal anesthesia, analgesia & sedation
- Small caliber catheters
- Spasmolytic cocktail
- Hydrophilic sheaths
- Anticoagulation (i.v.=i.a., weight adjusted dose)

#### **Negotiation of upper extremity vasculature**

- •Avoid non-J-tipped 0.035" wires >> 0.014"
- Liberal fluoroscopic guidance
- Anticipate spasm and adverse anatomic features

#### **Hemostasis**

"Patent hemostasis"

# Transradial Catheterization Complications: Prevention - Case selection

Evaluation of palmar arch circulation

# Transradial Catheterization Complications: Prevention: Palmar arch circulation

method [23]. The use of the Allen's test is controversial in the transradial catheterization community. It is a standard practice in our institution to perform the Allen's test as a part of a thorough examination for intact collateral circulation, however many high volume transradial operators have stopped using tere is All Would you access the ulnar artery following no ipsilateral radial artery harvesting for CABG?

complications.



# Transradial Catheterization Complications: Prevention: Palmar arch circulation

#### **Barbeau Test**

Barbeau et al. AHJ 2004

2 separate series:

n=1, 010

n=7, 049

No cases of acute hand

ischemia



# Transradial Catheterization Complications: Prevention - Access

# Access site management

## **Prevention:** Access

- Local anesthesia, liberal analgesia & sedation
- Small caliber catheters
- Spasmolytic cocktail
- Hydrophilic sheaths
- Anticoagulation

Hydrophilic sheath use reduces radial spasm

Rathore et al. JACC CArdiovasc Interv 2010

Route of heparin administration has no impact on radial occlusion rates (i.v.=i.a.)

Pancholy SB et al. AJC 2009

## **Prevention:** Access

## Hydrophilic sheath use reduces radial spasm

#### Rathore et al. JACC CArdiovasc Interv 2010

| Variables                       | Coated<br>(n = 397) | Uncoated<br>(n = 393) | p Value |
|---------------------------------|---------------------|-----------------------|---------|
| Operator RAS                    | 75 (19.0)           | 155 (39.9)            | < 0.001 |
| Patient discomfort              | 60 (15.1)           | 112 (28.5)            | < 0.001 |
| Local complication              |                     |                       |         |
| Large hematoma                  | 3 (0.8)             | 14 (3.7)              | 0.006   |
| Noncoronary dissection          | 1 (0.3)             | 2 (0.5)               | 1.00    |
| RAO at discharge                | 35 (8.9)            | 28 (10.0)             | 0.624   |
| Late complication ( $n = 625$ ) | 315                 | 310                   |         |
| Abscess                         | 9 (2.8)             | 0 (0)                 |         |
| Infection                       | 11 (3.5)            | 1 (0.3)               | 0.0001  |
| Pseudoaneurysm                  | 1 (0.3)             | 0 (0)                 | 0.570   |
| RAO at follow-up (n = 625)      | 24 (7.6)            | 19 (6.1)              | 0.436   |

## **Prevention:** Access

# Route of heparin administration has no impact on radial occlusion rates

Pancholy SB et al. AJC 2009

n=500





# Transradial Catheterization Complications: Prevention – Negotiation of upper extremity vascualture

"Easy does it"

# Prevention: Upper Extremity Vessel Negotiation

- •Minimize use of non-"J-tipped" 0.035" wires
- Fluoroscopic guidance/road mapping
- Anticipate spasm/adverse anatomy

# Prevention: <u>Upper Extremity Vessel Negotiation</u>

- •Minimize use of non-"J-tipped" 0.035" wires
- Fluoroscopic guidance/road mapping
- Anticipate spasm/adverse anatomy





Transradial Catheterization Complications:

<a href="Prevention-Radial artery occlusion">Prevention-Radial artery occlusion</a>

# Patent Hemostasis

## Prevention: Patent hemostasis

Pancholy et al. PROPHET. CCI 2008



radial artery patency @ 24-hr, 30-d



"Patent hemostasis" reduces risk of radial occlusion

# Prevention and Management

| Event                                                                                                     | Prevention/Management                                         |  |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| Radial artery occlusion                                                                                   | ·Anticoagulation ·Patent hemostasis                           |  |
| Nonocclusive radian artery injury                                                                         | •Careful evaluation prior to harvesting for CABG  Prevention: |  |
| •Verify functionality of dual palmar arch supply  (Allen, Barbeau tests) •Technique and dedicated devices |                                                               |  |
| •Patent hemostasis                                                                                        |                                                               |  |
| Pseudoaneurysm                                                                                            | •Compression •Thrombin injection                              |  |
| AV fistula                                                                                                | •Surgery                                                      |  |
| Sterile granuloma                                                                                         | •Removal of hydrophillic coating                              |  |
| Nerve damage                                                                                              | -Supportive care                                              |  |

#### Prevention and Management of Critical Hand Ischemia

# What should be done when radial occlusion is detected?

Recognize the potential consequences

Avoid nihilism

Ulnar artery compression for radial artery occlusions

Early angiography and intervention for CHI

#### Prevention of Hand ischemia

#### Ulnar compression can resolve early radial occlusion

Berant et al. AJC 2011



i.v. heparin 2000u i.v. heparin 5000u

TR hemostatic band 3-4 hour duplex



1-hr ulnar occlusion



#### Prevention of Hand ischemia

#### Ulnar compression can resolve early radial occlusion







# Management of Hand ischemia

Early angiography and intervention for critical hand ischemia



# Summary

TRC enhances patient comfort and is likely to reduce the rates of minor vascular comlpications (vs. TFC)

Though generally very safe, serious potential complications of TRC should be recognized

Most complications are easily avoided by simple preventive measures (<u>case selection</u>, <u>technique and</u> <u>dedicated devices</u>, <u>patent hemostasis</u>)

Early detection and intervention should may prevent permanent radial occlusion and critical hand ischemia



