The Coronary Care Unit in the New Millenium: Change and Challenges

Dan Fintel, MD
Professor of Medicine
Feinberg School of Medicine,
Northwestern University
Disclosures

• I have no disclosures

• Drs. David Morrow at Harvard and Jason Katz at U. of North Carolina provided useful material for this presentation
Patient #1

- 45yo male with history of CAD, CABG
- Witnessed VT/VF arrest in the field
- Prolonged resuscitation, multiple defibrillations
- Aspiration \rightarrow Acute Lung Injury (ALI)
- Vasopressor-refractory shock
- Relative adrenal insufficiency
- Refractory hypoxemia \rightarrow Airway Pressure Release Ventilation (APRV)
- Paralysis, heavy sedation
- Therapeutic hypothermia (TH)
Patient #2

- 60yo female
- History of remote breast cancer
- Respiratory failure
- Progressive hemodynamic instability
- Cardiac tamponade
- Multi-system organ failure
- Mechanical ventilation
- Multiple vasopressors
Where should these patients be treated?
Who should take care of these patients?
How should these doctors and nurses be trained?
Recommendations for the structure, organization, and operation of intensive cardiac care units

Yonathan Hasin¹*, Nicolas Danchin², Gerasimos S. Filippatos³, Magda Heras⁴, Uwe Janssens⁵, Jonathan Leor⁶, Menachem Nahir¹, Alexander Parkhomenko⁷, Kristian Thygesen⁸, Marco Tubaro⁹, Lars C. Wallentin¹⁰, and Ilia Zakke¹¹ on behalf of the Working Group on Acute Cardiac Care of the European Society of Cardiology

To keep pace with evolution of the contemporary CICU, our roadmap includes

- **Enhanced training** to ensure development of the basic skills necessary to provide care in this setting
- **Opportunities** for advanced training in critical care cardiology for those who intend to specialize as a cardiac intensivist
Evolution of Critical Care Cardiology: An Emerging Need

- Epidemiology in the CCU is changing
- CV conditions not seen in isolation but with an array of additional medical comorbidities
- Cardiac issues 1º at admission become 2º to nosocomial ICU complications
- Blurring of distinction between CCUs and general medical ICUs
Historical Aspects of CCU Care
Evolution of Critical Care Cardiology: Transformation of the Cardiovascular Intensive Care Unit

Morrow et al. Circulation 2012; 126: 1408-1428

Comprehensive Critical Care

- Mechanical circulatory support
- Therapeutic hypothermia
- Advanced modes of ventilation
- Renal replacement therapy
- Invasive & non-invasive monitoring

Preventive Intervention

- Therapy for advanced heart failure
- Interventions for pulmonary HTN
- Protocols for patient safety

Rapid Resuscitation

- Rapid defibrillation
- Antiarrhythmia therapy
- Expanded pharmacotherapy

- Post-MI care
- Suspected acute ischemia

- Specialized nursing
- All ACS and heart failure

Advances in technology

- Heavy use of information technology

Advances in medical care

- Therapy for advanced heart failure
- Interventions for pulmonary HTN
- Protocols for patient safety

Advances in training & organization

- Advanced nursing practice
- Multidisciplinary team-based care
- Performance improvement
- Heavy use of information technology

Changes in population

- Complex CV disease, severe comorbidity

Evolution of Critical Care Cardiology

- Focus on STEMI patient
- All ACS and heart failure

- Nurses as 1st responders
- Specialized nursing

- Post-MI care
- Suspected acute ischemia

- Rapid defibrillation
- Antiarrhythmia therapy
- Expanded pharmacotherapy
Relative Change in Odds of Diagnosis or Procedure
Duke University Medical Center CCU 1998 to 2006

-7% STEMI
13% NSTEMI
26% Sepsis
23% Liver Failure
0% PCI
-4% PA line
11% Bronchoscopy
6% Mechanical Ventilation

Katz JN et al; Crit Care Med 2010; 38: 375-381
Increasing Prevalence of Non-CV Illness in Tertiary Center CCU

Katz JN et al; Crit Care Med 2010; 38: 375-381
Increasing Skill Requirements for Managing MDs in the CICU

- Prevention and Management of Ventilator Acquired Complications
- Treatment of acute lung injury
- Prolonged ventilation and weaning
- Renal replacement therapy
- Nutritional and metabolic mgmt
- ICU delirium and polyneuropathy
- Prevention of hospital-acquired infections
Intensivist vs. No Intensivist

- 25% of US ICUs have an intensivist managing most patients; 50% of US ICUs have no intensivist at all

<table>
<thead>
<tr>
<th>Setting</th>
<th>N</th>
<th>OR</th>
<th>L95</th>
<th>U95</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Med/Surg</td>
<td>439</td>
<td>0.48</td>
<td>0.32</td>
<td>0.72</td>
<td><0.001</td>
</tr>
<tr>
<td>Med/Surg</td>
<td>625</td>
<td>0.69</td>
<td>0.52</td>
<td>0.91</td>
<td>0.009</td>
</tr>
<tr>
<td>Surgical</td>
<td>667</td>
<td>0.60</td>
<td>0.49</td>
<td>0.73</td>
<td><0.001</td>
</tr>
<tr>
<td>Medical</td>
<td>2409</td>
<td>0.82</td>
<td>0.61</td>
<td>1.10</td>
<td>0.19</td>
</tr>
<tr>
<td>Surgical</td>
<td>274</td>
<td>0.42</td>
<td>0.20</td>
<td>0.89</td>
<td>0.024</td>
</tr>
<tr>
<td>Medical</td>
<td>1389</td>
<td>0.71</td>
<td>0.54</td>
<td>0.94</td>
<td>0.015</td>
</tr>
<tr>
<td>Surgical</td>
<td>177</td>
<td>0.54</td>
<td>0.26</td>
<td>1.11</td>
<td>0.094</td>
</tr>
<tr>
<td>Pediatric</td>
<td>262</td>
<td>0.53</td>
<td>0.17</td>
<td>1.65</td>
<td>0.27</td>
</tr>
<tr>
<td>Med/Surg</td>
<td>1656</td>
<td>0.61</td>
<td>0.41</td>
<td>0.91</td>
<td>0.017</td>
</tr>
<tr>
<td>Medical</td>
<td>2959</td>
<td>0.59</td>
<td>0.44</td>
<td>0.79</td>
<td><0.001</td>
</tr>
<tr>
<td>Surgical</td>
<td>426</td>
<td>0.15</td>
<td>0.05</td>
<td>0.47</td>
<td>0.001</td>
</tr>
<tr>
<td>Pediatric</td>
<td>619</td>
<td>0.38</td>
<td>0.27</td>
<td>0.53</td>
<td><0.001</td>
</tr>
<tr>
<td>Medical</td>
<td>349</td>
<td>1.44</td>
<td>1.00</td>
<td>2.07</td>
<td>0.049</td>
</tr>
<tr>
<td>Overall</td>
<td>12251</td>
<td>0.61</td>
<td>0.50</td>
<td>0.75</td>
<td><0.001</td>
</tr>
</tbody>
</table>

- **Pronovost et al. JAMA 2002; 288: 2151-2162**

- 25% of US ICUs have an intensivist managing most patients; 50% of US ICUs have no intensivist at all.
Emerging External Requirements

• Leapfrog Group implemented ICU Physician Staffing standard: all ICUs managed by dedicated intensivists (in 2009 met by 37% of surveyed hospitals)

• Also by Michigan Health & Safety Coalition, Florida Hospital Association, …

• American Hospital Association annual survey requires # of Intensivists we have on medical staff ➔ US News & World Report ranking of America's Best Hospitals

Leapfrog issues patient safety grades for U.S. hospitals
The Leapfrog Group issued an updated Hospital Safety Score report this week, giving "F" grades to 25 hospitals and "D" marks to another 121 facilities, including the Cleveland Clinic. The data show 790 of 2,618 hospitals got an "A" grade and 23% got a higher rating than in the June report. Leapfrog's scoring methodology has been criticized by some hospitals. HealthLeaders
Should We Continue to Evolve?
AHA ROADMAP
Recommendations

“Categorization” of Cardiac Intensive Care Units
Care Environment in the CICU

<table>
<thead>
<tr>
<th>Complexity of illness</th>
<th>% of Patients CICUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less</td>
<td>Largest</td>
</tr>
<tr>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Highly Complex</td>
<td>Minority</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CICU Type</th>
<th>Level 3 CICU</th>
<th>Level 2 CICU</th>
<th>Level 1 CICU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example Conditions</td>
<td>NSTEMI</td>
<td>STEMI w/ complic</td>
<td>Refractory shock</td>
</tr>
<tr>
<td></td>
<td>AF with RVR</td>
<td>Refractory VT</td>
<td>Complex congenital</td>
</tr>
<tr>
<td></td>
<td>Most HF</td>
<td>Pulmonary HTN</td>
<td>Pulmonary HTN</td>
</tr>
<tr>
<td>Example Resources</td>
<td>Telemetry</td>
<td>IABP</td>
<td>Mechanical Circulatory Support</td>
</tr>
<tr>
<td></td>
<td>Mech ventil</td>
<td>PA tailored inotropes</td>
<td>Circulatory Support</td>
</tr>
<tr>
<td>MD Staffing</td>
<td>Cardiologist</td>
<td>Intensivist</td>
<td>‘High-intensity’ cardiac or general intensivist</td>
</tr>
<tr>
<td></td>
<td>Intensivist available</td>
<td>available</td>
<td>available</td>
</tr>
</tbody>
</table>

Adapted by Morrow DA from Circulation 2012; 126: 1408-1428

Dan Fintel, MD 2/5/2014
Survey of US CICU Directors: Conclusions

In a sample of mostly academic-affiliated hospitals

• Most (68%) hospitals surveyed have dedicated CICUs
 o 55% of dedicated CICUs report ‘closed’ unit model
 o Few CICUs have routine intensivist staffing

• Wide agreement in need for cardiologists with intensivist expertise

• CICU directors felt limited feasibility to develop ‘closed’ CICU w/ full-time cardiac intensivist staff

• Room for change in US CICUs to meet evidence-based staffing paradigms from general ICU literature

O’Malley, Olenchock, Bohula-May, et al.
EHJ-Acute Cardiovascular Care 2013 (In Press)
AHA ROADMAP
Recommendations

Training Paradigms in Cardiovascular Critical Care
<table>
<thead>
<tr>
<th>Clinical, mo</th>
<th>Current Pathway for Dual Certification</th>
<th>Tailored Program for Dual-Certification Critical Care Cardiology</th>
<th>Possible Dedicated Training Program in Critical Care Cardiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noninvasive</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Vascular</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Catheterization laboratory</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Electrophysiology</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Nonlaboratory clinical practice*</td>
<td>9</td>
<td>9 (Inclusive of below)</td>
<td>6 (Inclusive of below)</td>
</tr>
<tr>
<td>Advanced heart failure</td>
<td>…</td>
<td>Focused experience</td>
<td>Focused experience</td>
</tr>
<tr>
<td>Pulmonary hypertension</td>
<td>…</td>
<td>Focused experience</td>
<td>Focused experience</td>
</tr>
<tr>
<td>Outpatient continuity clinic</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>Critical care</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICU or CICU</td>
<td>3 to 6</td>
<td>3 to 6</td>
<td>4 to 6</td>
</tr>
<tr>
<td>Nonmedical ICU†</td>
<td>3 to 6</td>
<td>1 to 3</td>
<td>3 to 6</td>
</tr>
<tr>
<td>Cardiothoracic surgery ICU</td>
<td>…</td>
<td>2 to 3</td>
<td>2 to 3</td>
</tr>
<tr>
<td>Research and elective, mo</td>
<td>12 to 18</td>
<td>12 to 18</td>
<td>12 to 18</td>
</tr>
<tr>
<td>Total months of training</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Program faculty and leadership</td>
<td>Separately managed programs in CVD and critical care medicine</td>
<td>Integrated faculty and collaborative leadership from CV medicine and critical care medicine</td>
<td>Integrated faculty and collaborative leadership from CV medicine and critical care medicine</td>
</tr>
<tr>
<td>Program accreditation</td>
<td>Separate accredited programs: CV medicine</td>
<td>Accredited programs in CV medicine and critical care medicine exist within system</td>
<td>Integrated program in critical care cardiology with single accreditation</td>
</tr>
<tr>
<td></td>
<td>Critical care medicine (1-y program)</td>
<td>Either the critical care medicine or CV medicine programs may have 1-y accredited program in critical care cardiology</td>
<td></td>
</tr>
</tbody>
</table>
Basic Curriculum for CCC

Physicians who provide care for acute CV conditions requiring critical care (example skills):

• Use and interpretation of noninvasive and invasive hemodynamic monitoring tools
• Appropriate use of intraaortic balloon pumps
• Basic management mechanical ventilation
• Indications for renal replacement therapies
• Exposure should include:
 ACS, STEMI, cardiogenic shock, acute HF, symptomatic arrhythmias, HTN crisis, infective endocarditis, aortic dissection, pericardial tamponade, and pulmonary embolism

Beller et al. COCATS 3 Task Force 1. J Am Coll Cardiol 2008;51:333-414
Advanced Curriculum for CCC

Physicians in the modern advanced (Level 1) CICU should be experienced in managing use and complications of advanced medical technologies:

- Complex modes of mechanical ventilation; management of ALI/ARDS
- Prevention of ventilator-related complications
- Mechanical circulatory support
- Inhaled pulmonary vasodilators
- Management of therapeutically hypothermia
- Nutritional and metabolic mgmt
- Management & prevention of ICU delirium

Adapted by Morrow DA from Circulation 2012; 126: 1408-1428
Summary

• Advances in technology, medical care, critical care unit organization, and changes in the patient population have contributed to evolution of the contemporary cardiac ICU (CICU) from a coronary care unit focused on rapid resuscitation to a unit providing comprehensive critical care for patients with CV diseases.

• The continually evolving field of critical care necessitates innovative approaches to the staffing, structure, and training behind the contemporary CICU.

• Physicians in the modern CICU must be experienced in managing the use and complications of advanced medical technologies.

• The future of cardiovascular critical care medicine is rapidly evolving, with an opportunity to improve the education and skills of clinicians and the care of their patients.
Additional Slides
Select referral centers should have closed CICUs with full-time staffing by cardiac intensivists*.

<table>
<thead>
<tr>
<th>Attitude</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Agree</td>
<td>26.8%</td>
</tr>
<tr>
<td>Somewhat Agree</td>
<td>30.9%</td>
</tr>
<tr>
<td>Neutral</td>
<td>23.6%</td>
</tr>
<tr>
<td>Somewhat Disagree</td>
<td>13.8%</td>
</tr>
<tr>
<td>Strongly Disagree</td>
<td>4.9%</td>
</tr>
</tbody>
</table>

The current structure and staffing of your CICU is the best fit for your pt popul.

<table>
<thead>
<tr>
<th>Attitude</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Agree</td>
<td>19.5%</td>
</tr>
<tr>
<td>Somewhat Agree</td>
<td>41.5%</td>
</tr>
<tr>
<td>Neutral</td>
<td>17.9%</td>
</tr>
<tr>
<td>Somewhat Disagree</td>
<td>17.1%</td>
</tr>
<tr>
<td>Strongly Disagree</td>
<td>4.1%</td>
</tr>
</tbody>
</table>

It’s feasible for my hosp to develop a closed CICU with full-time staffing by cardiac intensivists.

<table>
<thead>
<tr>
<th>Attitude</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Agree</td>
<td>9.9%</td>
</tr>
<tr>
<td>Somewhat Agree</td>
<td>18.2%</td>
</tr>
<tr>
<td>Neutral</td>
<td>16.5%</td>
</tr>
<tr>
<td>Somewhat Disagree</td>
<td>34.7%</td>
</tr>
<tr>
<td>Strongly Disagree</td>
<td>20.7%</td>
</tr>
</tbody>
</table>

*specialized skills in critical care by training or focused experience

O’Malley, Olenchock, Bohula-May, et al.
EHJ-Acute Cardiovascular Care 2013 (Online ahead of print)
Certification in Cardiovascular (CV) Diseases & Critical Care Medicine

<table>
<thead>
<tr>
<th>CRITERION</th>
<th>DETAILS</th>
<th>CV DISEASE</th>
<th>CRITICAL CARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eligibility criteria</td>
<td>Completion of 3 yrs of accredited cardiovascular disease fellowship and certification by the ABIM</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Training within a critical care fellowship program in a department of medicine</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Training Requirements</td>
<td>Completion of 24 months of full time clinical training in an accredited fellowship in cardiovascular medicine</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Completion of 12 months of accredited clinical fellowship training in critical care medicine</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Up to six months of critical care medicine experience in cardiovascular disease and critical care medicine training can be applied to admission for both examinations</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Minimum total full-time clinical training for dual certification in cardiovascular disease and critical care medicine of 30 months (Total training time 48 months)</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Morrow DA from Circulation 2012; 126: 1408-1428
Certification in Cardiovascular (CV) Diseases & Critical Care Medicine

<table>
<thead>
<tr>
<th>CRITERION</th>
<th>DETAILS</th>
<th>CV DISEASE</th>
<th>CRITICAL CARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedural Competency</td>
<td>Cardioversion; electrocardiography, including ambulatory monitoring and exercise testing; echocardiography; insertion and management of temporary pacemakers; and left-heart catheterization and diagnostic coronary angiography.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced cardiac life support (ACLS)</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Placement of arterial, central venous, and pulmonary artery balloon flotation catheters</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Calibration and operation of hemodynamic recording systems</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Airway management and endotracheal intubation</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ventilator management and noninvasive ventilation</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insertion and management of chest tubes, and thoracentesis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proficiency in use of ultrasound to guide central line placement and thoracentesis strongly recommended</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Additional Areas of Knowledge and Practical Experience</td>
<td>Indications, contraindications, complications, and limitations of the following procedures:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intra-aortic balloon pump</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pericardiocentesis</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Transvenous pacemaker insertion</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Continuous renal replacement therapy and hemodialysis</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Fiberoptic bronchoscopy</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>

Morrow DA from Circulation 2012; 126: 1408-1428
What does Leapfrog ask hospitals?

In the Leapfrog Hospital Quality and Safety Survey, Leapfrog asks hospitals if they adhere to the following four quality and safety practices. Significant scientific evidence shows that these practices reduce unnecessary deaths and injuries.

1. **CPOE** – choose a hospital that requires its staff to use computers to order medications, tests and procedures. This is called a Computerized Physician Order Entry system (CPOE).

2. **ICU Staffing** – choose a hospital with an intensive care unit (ICU) that is staffed by doctors and other caregivers who have special training in critical care. These doctors are called 'intensivists'.

3. **High Risk Treatments** – select a hospital with lots of experience and the best results for specific procedures, surgeries or conditions. This is known as Evidence Based Hospital Referral (High risk procedures).

4. **Leapfrog Safe Practices Score** – select a hospital that has a high Leapfrog Safe Practices Score. This means it has put in place procedures to reduce preventable medical mistakes.

Leapfrog ICU Physician Staffing (IPS) Safety Initiative

- All adult and pediatric ICUs should be managed or co-managed by board-certified intensivists who,
 - Are present during daytime hours and provide clinical care exclusively in the ICU and,
 - When not on-site or via telemedicine, are available by pager within 5 minutes and can arrange for a FCCS-certified physician or physician extender to reach ICU patients within 5 minutes.

Based upon current literature, over 54,000 ICU deaths could be avoided if the Leapfrog IPS standards are implemented in all US urban hospital ICUs.
AHA ROADMAP
Recommendations

• Level 1 CICU
 – All forms of invasive and non-invasive monitoring
 – Can care for advanced HF and LVAD/MCS patients
 – High intensity staffing → management by full-time intensivist (either cardiac or general) with cardiology collaboration
 – On-site nursing director; Nurse:Patient ratios of 1:1 or 1:2
 – Multidisciplinary care team = pharmacy, nutrition, RT
 – Ready access to interventional cardiology and cardiac surgery
 – Commitment to clinical and translational research
 – Paradigm for most large, tertiary medical centers
AHA ROADMAP
Recommendations

• Level 2 CICU
 – Can provide initial evaluation & management of most acute CV conditions and medical comorbidities
 – All invasive and non-invasive monitoring is available
 – MCS available, but largely limited to IABP
 – Other therapies (e.g. CRRT) may or may not be available
 – Physician staffing by cardiologists; intensivists available for consultation or co-management of select issues
 – Nurse:Patient ratios of 1:1 to 1:3
 – Consider transfer to Level 1 CICU for patient requiring advanced hemodynamic support, those under consideration for high-risk surgery, or those with multisystem organ dysfunction
AHA ROADMAP
Recommendations

• Level 3 CICU
 – Lowest level of CICU support
 – Capacity to initially manage respiratory failure, administer vasopressors & inotropes, and provide immediate resuscitation for cardiac arrest
 – Non-invasive monitoring and echo are available
 – Critical care consultation is available
 – Nurse:Patient ratios of 1:2 or 1:3
 – Need to have systems-of-care focused on appropriate timing and destination of transfer
American Board of Internal Medicine (ABIM) Training Requirements for Specialists in Cardiovascular Disease Seeking Critical Care Certification

Eligibility Criteria
- Training conducted in Critical Care fellowship program within a Department of Medicine
- Completion of 3 years of accredited Cardiovascular Disease fellowship and certification by the ABIM

Training Requirements
- Completion of 1 year of accredited clinical fellowship training in Critical Care Medicine
- Up to 6 months of critical care medicine experience in Cardiovascular Disease and Critical Care Medicine training can be applied to admission for both examinations
- Minimum total full-time clinical training for dual certification in Cardiovascular Disease and Critical Care Medicine of 30 months

Procedural Requirements
Required Procedures
- Maintenance of an open airway
- Oral/nasal intubation
- Ventilator management
- Insertion and management of chest tubes
- ACLS
- Placement of arterial, central venous, and pulmonary artery balloon flotation catheters
- Calibration and operation of hemodynamic recording systems

Suggested Procedures
- Pericardiocentesis
- Transvenous pacemaker insertion
- Peritoneal dialysis management
- Fiberoptic bronchoscopy
- Peritoneal lavage
- Insertion of esophageal-gastric balloon for variceal bleeding tamponade